roma_unsb/models/roma_unsb_single_model.py

392 lines
16 KiB
Python
Raw Permalink Normal View History

2025-03-18 21:12:32 +08:00
import numpy as np
import math
import timm
import torch
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import GaussianBlur
from .base_model import BaseModel
from . import networks
from .patchnce import PatchNCELoss
import util.util as util
from torchvision.transforms import transforms as tfs
def warp(image, flow): #warp操作
"""
基于光流的图像变形函数
Args:
image: [B, C, H, W] 输入图像
flow: [B, 2, H, W] 光流场(x/y方向位移)
Returns:
warped: [B, C, H, W] 变形后的图像
"""
B, C, H, W = image.shape
# 生成网格坐标
grid_x, grid_y = torch.meshgrid(torch.arange(W), torch.arange(H))
grid = torch.stack((grid_x, grid_y), dim=0).float().to(image.device) # [2,H,W]
grid = grid.unsqueeze(0).repeat(B,1,1,1) # [B,2,H,W]
# 应用光流位移(归一化到[-1,1])
new_grid = grid + flow
new_grid[:,0,:,:] = 2.0 * new_grid[:,0,:,:] / (W-1) - 1.0 # x方向
new_grid[:,1,:,:] = 2.0 * new_grid[:,1,:,:] / (H-1) - 1.0 # y方向
new_grid = new_grid.permute(0,2,3,1) # [B,H,W,2]
# 双线性插值
return F.grid_sample(image, new_grid, align_corners=True)
class ContentAwareOptimization(nn.Module):
def __init__(self, lambda_inc=2.0, eta_ratio=0.4):
super().__init__()
self.lambda_inc = lambda_inc # 控制内容丰富区域的权重增量
self.eta_ratio = eta_ratio # 选择内容丰富区域的比例
self.criterionGAN = networks.GANLoss('lsgan').cuda() # 使用 LSGAN 损失
def compute_cosine_similarity(self, grad_patch, grad_mean):
"""
计算每个 token 梯度与整体平均梯度的余弦相似度
Args:
grad_patch: [B, N, D]每个 token 的梯度来自 scores
grad_mean: [B, D]整体平均梯度
Returns:
cosine: [B, N]余弦相似度 δ_i
"""
# 对每个 token 计算余弦相似度
cosine = F.cosine_similarity(grad_patch, grad_mean.unsqueeze(1), dim=2) # [B, N]
return cosine
def generate_weight_map(self, cosine):
"""
根据余弦相似度生成权重图
Args:
cosine: [B, N]余弦相似度 δ_i
Returns:
weights: [B, N]权重图 w_i
"""
B, N = cosine.shape
k = int(self.eta_ratio * N) # 选择 eta_ratio 比例的 token
_, indices = torch.topk(-cosine, k, dim=1) # 选择偏离最大的 k 个 token
weights = torch.ones_like(cosine)
for b in range(B):
selected_cosine = cosine[b, indices[b]]
weights[b, indices[b]] = self.lambda_inc / (torch.exp(torch.abs(selected_cosine)) + 1e-6)
return weights
def forward(self, scores, target):
"""
前向传播计算加权后的 GAN 损失
Args:
scores: [B, N, D]判别器的预测得分
target: 目标标签True False
Returns:
weighted_loss: 加权后的 GAN 损失
weight: 权重图 [B, N]
"""
# 计算原始 GAN 损失(假设 criterionGAN 返回 [B, N] 的损失分布)
loss = self.criterionGAN(scores, target)
# 捕获 scores 的梯度,形状为 [B, N, D]
grad_scores = torch.autograd.grad(loss, scores, retain_graph=True)[0]
# 计算整体平均梯度(在 N 维度上求均值)
grad_mean = torch.mean(grad_scores, dim=1) # [B, D]
# 计算余弦相似度 δ_i
cosine = self.compute_cosine_similarity(grad_scores, grad_mean) # [B, N]
# 生成权重图 w_i
weight = self.generate_weight_map(cosine) # [B, N]
# 计算加权后的 GAN 损失
weighted_loss = torch.mean(weight * self.criterionGAN(scores, target))
return weighted_loss, weight
class ContentAwareTemporalNorm(nn.Module):
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
super().__init__()
self.gamma_stride = gamma_stride # 控制整体运动幅度
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
# weight_patch: [B, 1, H, W] 来自转换后的 weight_map
weight_full = F.interpolate(
weight_patch,
size=target_size,
mode='bilinear', # 或 'nearest',根据需求选择
align_corners=False
)
return weight_full
def forward(self, weight_map):
"""
生成内容感知光流
Args:
weight_map: [B, N] 权重图(来自 ContentAwareOptimization)其中 N=576
Returns:
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
"""
B = weight_map.shape[0]
N = weight_map.shape[1]
# 假设 N 为完全平方数,计算边长(例如 576 -> 24x24
side = int(math.sqrt(N))
weight_map_2d = weight_map.view(B, 1, side, side) # 转换为 [B, 1, side, side]
# 上采样权重图到全分辨率
weight_full = self.upsample_weight_map(weight_map_2d) # [B, 1, 256, 256](例如)
# 归一化权重图L1归一化
weight_norm = F.normalize(weight_full, p=1, dim=(2,3))
# 生成高斯噪声
B, _, H, W = weight_norm.shape
z = torch.randn(B, 2, H, W, device=weight_norm.device)
# 合成基础光流
weight_expanded = weight_norm.expand(-1, 2, -1, -1)
F_raw = self.gamma_stride * weight_expanded * z
# 平滑处理
F_smooth = self.smoother(F_raw)
# 动态范围调整
F_content = torch.tanh(F_smooth)
return F_content
class RomaUnsbSingleModel(BaseModel):
@staticmethod
def modify_commandline_options(parser, is_train=True):
"""配置 CTNx 模型的特定选项"""
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm')
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
parser.add_argument('--lambda_spatial', type=float, default=1.0, help='weight for Local Structural Consistency')
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
parser.add_argument('--local_nums', type=int, default=64, help='number of local patches')
parser.add_argument('--side_length', type=int, default=7)
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions')
parser.add_argument('--gamma_stride', type=float, default=20, help='ratio of stride for computing the similarity matrix')
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter')
parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer')
parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers')
opt, _ = parser.parse_known_args()
return parser
def __init__(self, opt):
BaseModel.__init__(self, opt)
self.loss_names = ['G_GAN', 'D_ViT', 'G', 'global', 'spatial','ctn']
self.visual_names = ['real_A', 'fake_B', 'real_B']
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
if self.isTrain:
self.model_names = ['G', 'D_ViT']
else: # during test time, only load G
self.model_names = ['G']
# define networks (both generator and discriminator)
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
if self.isTrain:
self.netD_ViT = networks.MLPDiscriminator().to(self.device)
# self.netPreViT = timm.create_model("vit_base_patch32_384",pretrained=True).to(self.device)
self.netPreViT = timm.create_model("vit_base_patch16_384",pretrained=True).to(self.device)
self.resize = tfs.Resize(size=(384,384))
# self.resize = tfs.Resize(size=(224, 224))
# define loss functions
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionL1 = torch.nn.L1Loss().to(self.device)
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizer_D_ViT = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D_ViT)
self.cao = ContentAwareOptimization(opt.lambda_inc, opt.eta_ratio) #损失函数
self.ctn = ContentAwareTemporalNorm() #生成的伪光流
def data_dependent_initialize(self, data):
"""
The feature network netF is defined in terms of the shape of the intermediate, extracted
features of the encoder portion of netG. Because of this, the weights of netF are
initialized at the first feedforward pass with some input images.
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
"""
pass
def optimize_parameters(self):
# forward
self.forward()
# update D
self.set_requires_grad(self.netD_ViT, True)
self.optimizer_D_ViT.zero_grad()
self.loss_D = self.compute_D_loss()
self.loss_D.backward()
self.optimizer_D_ViT.step()
# update G
self.set_requires_grad(self.netD_ViT, False)
self.optimizer_G.zero_grad()
self.loss_G = self.compute_G_loss()
self.loss_G.backward()
self.optimizer_G.step()
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): include the data itself and its metadata information.
The option 'direction' can be used to swap domain A and domain B.
"""
AtoB = self.opt.direction == 'AtoB'
self.real_A = input['A' if AtoB else 'B'].to(self.device)
self.real_B = input['B' if AtoB else 'A'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self.fake_B = self.netG(self.real_A)
if self.opt.isTrain:
real_A = self.real_A
real_B = self.real_B
fake_B = self.fake_B
self.real_A_resize = self.resize(real_A)
real_B = self.resize(real_B)
self.fake_B_resize = self.resize(fake_B)
self.mutil_real_A_tokens = self.netPreViT(self.real_A_resize, self.atten_layers, get_tokens=True)
self.mutil_real_B_tokens = self.netPreViT(real_B, self.atten_layers, get_tokens=True)
self.mutil_fake_B_tokens = self.netPreViT(self.fake_B_resize, self.atten_layers, get_tokens=True)
def compute_D_loss(self):
"""Calculate GAN loss for the discriminator"""
lambda_D_ViT = self.opt.lambda_D_ViT
fake_B_tokens = self.mutil_fake_B_tokens[0].detach()
real_B_tokens = self.mutil_real_B_tokens[0]
pre_fake_ViT = self.netD_ViT(fake_B_tokens)
pred_real_ViT = self.netD_ViT(real_B_tokens)
self.loss_D_real_ViT , self.weight_real = self.cao(pred_real_ViT, True)
self.loss_D_fake_ViT , self.weight_fake = self.cao(pre_fake_ViT, False)
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5* lambda_D_ViT
return self.loss_D_ViT
def compute_G_loss(self):
if self.opt.lambda_ctn > 0.0:
# 生成光流图(使用判别器的权重)
self.f_content = self.ctn(self.weight_fake.detach())
# 变换后的图片
self.warped_real_A = warp(self.real_A, self.f_content)
self.warped_fake_B = warp(self.fake_B, self.f_content)
# 第二次生成
self.warped_fake_B2 = self.netG(self.warped_real_A)
# 计算损失
self.loss_ctn = self.criterionL1(self.warped_fake_B, self.warped_fake_B2) * self.opt.lambda_ctn
else:
self.loss_ctn = 0.0
# if self.opt.lambda_GAN > 0.0:
# fake_B_tokens = self.mutil_fake_B_tokens[0]
# pred_fake_ViT = self.netD_ViT(fake_B_tokens)
# self.loss_G_GAN = self.criterionGAN(pred_fake_ViT, True) * self.opt.lambda_GAN
# else:
# self.loss_G_GAN = 0.0
if self.opt.lambda_GAN > 0.0:
fake_B_tokens = self.mutil_fake_B_tokens[0]
pred_fake_ViT = self.netD_ViT(fake_B_tokens)
self.loss_G_fake_ViT , self.weight_real = self.cao(pred_fake_ViT, True)
self.loss_G_GAN = self.loss_G_fake_ViT * self.opt.lambda_GAN
else:
self.loss_G_GAN = 0.0
if self.opt.lambda_global > 0.0 or self.opt.lambda_spatial > 0.0:
self.loss_global, self.loss_spatial = self.calculate_attention_loss()
else:
self.loss_global, self.loss_spatial = 0.0, 0.0
self.loss_G = self.loss_G_GAN + self.loss_global + self.loss_spatial + self.loss_ctn
return self.loss_G
def calculate_attention_loss(self):
n_layers = len(self.atten_layers)
mutil_real_A_tokens = self.mutil_real_A_tokens
mutil_fake_B_tokens = self.mutil_fake_B_tokens
if self.opt.lambda_global > 0.0:
loss_global = self.calculate_similarity(mutil_real_A_tokens, mutil_fake_B_tokens)
else:
loss_global = 0.0
if self.opt.lambda_spatial > 0.0:
loss_spatial = 0.0
local_nums = self.opt.local_nums
tokens_cnt = 576
local_id = np.random.permutation(tokens_cnt)
local_id = local_id[:int(min(local_nums, tokens_cnt))]
mutil_real_A_local_tokens = self.netPreViT(self.real_A_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
mutil_fake_B_local_tokens = self.netPreViT(self.fake_B_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
loss_spatial = self.calculate_similarity(mutil_real_A_local_tokens, mutil_fake_B_local_tokens)
else:
loss_spatial = 0.0
return loss_global * self.opt.lambda_global, loss_spatial * self.opt.lambda_spatial
def calculate_similarity(self, mutil_src_tokens, mutil_tgt_tokens):
loss = 0.0
n_layers = len(self.atten_layers)
for src_tokens, tgt_tokens in zip(mutil_src_tokens, mutil_tgt_tokens):
src_tgt = src_tokens.bmm(tgt_tokens.permute(0,2,1))
tgt_src = tgt_tokens.bmm(src_tokens.permute(0,2,1))
cos_dis_global = F.cosine_similarity(src_tgt, tgt_src, dim=-1)
loss += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
loss = loss / n_layers
return loss