41 lines
1.5 KiB
Python
41 lines
1.5 KiB
Python
|
|
from data.base_dataset import BaseDataset, get_transform
|
||
|
|
from data.image_folder import make_dataset
|
||
|
|
from PIL import Image
|
||
|
|
|
||
|
|
|
||
|
|
class SingleDataset(BaseDataset):
|
||
|
|
"""This dataset class can load a set of images specified by the path --dataroot /path/to/data.
|
||
|
|
|
||
|
|
It can be used for generating CycleGAN results only for one side with the model option '-model test'.
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self, opt):
|
||
|
|
"""Initialize this dataset class.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
||
|
|
"""
|
||
|
|
BaseDataset.__init__(self, opt)
|
||
|
|
self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size))
|
||
|
|
input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc
|
||
|
|
self.transform = get_transform(opt, grayscale=(input_nc == 1))
|
||
|
|
|
||
|
|
def __getitem__(self, index):
|
||
|
|
"""Return a data point and its metadata information.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
index - - a random integer for data indexing
|
||
|
|
|
||
|
|
Returns a dictionary that contains A and A_paths
|
||
|
|
A(tensor) - - an image in one domain
|
||
|
|
A_paths(str) - - the path of the image
|
||
|
|
"""
|
||
|
|
A_path = self.A_paths[index]
|
||
|
|
A_img = Image.open(A_path).convert('RGB')
|
||
|
|
A = self.transform(A_img)
|
||
|
|
return {'A': A, 'A_paths': A_path}
|
||
|
|
|
||
|
|
def __len__(self):
|
||
|
|
"""Return the total number of images in the dataset."""
|
||
|
|
return len(self.A_paths)
|