parser.add_argument('--display_freq',type=int,default=50,help='frequency of showing training results on screen')
parser.add_argument('--display_ncols',type=int,default=4,help='if positive, display all images in a single visdom web panel with certain number of images per row.')
parser.add_argument('--display_id',type=int,default=None,help='window id of the web display. Default is random window id')
parser.add_argument('--display_server',type=str,default="http://localhost",help='visdom server of the web display')
parser.add_argument('--display_env',type=str,default='main',help='visdom display environment name (default is "main")')
parser.add_argument('--display_port',type=int,default=8097,help='visdom port of the web display')
parser.add_argument('--update_html_freq',type=int,default=1000,help='frequency of saving training results to html')
parser.add_argument('--print_freq',type=int,default=100,help='frequency of showing training results on console')
parser.add_argument('--no_html',action='store_true',help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
# network saving and loading parameters
parser.add_argument('--save_latest_freq',type=int,default=5000,help='frequency of saving the latest results')
parser.add_argument('--save_epoch_freq',type=int,default=5,help='frequency of saving checkpoints at the end of epochs')
parser.add_argument('--epoch_count',type=int,default=1,help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
parser.add_argument('--n_epochs',type=int,default=100,help='number of epochs with the initial learning rate')
parser.add_argument('--n_epochs_decay',type=int,default=100,help='number of epochs to linearly decay learning rate to zero')
parser.add_argument('--beta1',type=float,default=0.5,help='momentum term of adam')
parser.add_argument('--beta2',type=float,default=0.999,help='momentum term of adam')
parser.add_argument('--lr',type=float,default=0.0002,help='initial learning rate for adam')
parser.add_argument('--gan_mode',type=str,default='lsgan',help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
parser.add_argument('--pool_size',type=int,default=50,help='the size of image buffer that stores previously generated images')