34 lines
1.2 KiB
Bash
Raw Permalink Normal View History

2025-02-23 15:37:59 +08:00
#!/bin/sh
2025-02-22 14:21:54 +08:00
# Train for video mode
2025-02-23 15:32:34 +08:00
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned_double --no_flip --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --lambda_motion 1.0 --atten_layers 1,3,5 --lr 0.00001
2025-02-22 14:21:54 +08:00
# Train for image mode
2025-02-23 15:32:34 +08:00
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --atten_layers 1,3,5 --lr 0.00001
python train.py \
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
--name ROMA_UNSB_001 \
--dataset_mode unaligned_double \
--no_flip \
--display_env ROMA \
--model roma_unsb \
--lambda_GAN 8.0 \
--lambda_NCE 8.0 \
--lambda_SB 0.1 \
--lambda_ctn 1.0 \
--lambda_inc 1.0 \
--lr 0.00001 \
--gpu_id 0 \
--nce_idt False \
--nce_layers 0,4,8,12,16 \
--netF mlp_sample \
--netF_nc 256 \
--nce_T 0.07 \
--lmda_1 0.1 \
--num_patches 256 \
--flip_equivariance False \
2025-02-23 15:58:59 +08:00
--eta_ratio 0.1 \
2025-02-23 23:15:25 +08:00
--tau 0.01 \
Traceback (most recent call last): File "/home/openxs/jj/roma_unsb/train.py", line 47, in <module> model.optimize_parameters() # calculate loss functions, get gradients, update network weights File "/home/openxs/jj/roma_unsb/models/roma_unsb_model.py", line 315, in optimize_parameters self.forward() File "/home/openxs/jj/roma_unsb/models/roma_unsb_model.py", line 445, in forward Xt_1 = self.netG(Xt, self.time, z) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/parallel/data_parallel.py", line 169, in forward return self.module(*inputs[0], **kwargs[0]) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/openxs/jj/roma_unsb/models/networks.py", line 980, in forward feat = layer(feat) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 463, in forward return self._conv_forward(input, self.weight, self.bias) File "/home/openxs/anaconda3/envs/I2V/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 459, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Given groups=1, weight of size [64, 3, 7, 7], expected input[1, 1, 1734, 774] to have 3 channels, but got 1 channels instead
2025-02-23 16:49:26 +08:00
--num_timesteps 10 \
2025-02-23 18:42:21 +08:00
--input_nc 3