roma_unsb/timm/models/layers/separable_conv.py

74 lines
2.5 KiB
Python
Raw Permalink Normal View History

2025-02-22 14:21:54 +08:00
""" Depthwise Separable Conv Modules
Basic DWS convs. Other variations of DWS exist with batch norm or activations between the
DW and PW convs such as the Depthwise modules in MobileNetV2 / EfficientNet and Xception.
Hacked together by / Copyright 2020 Ross Wightman
"""
from torch import nn as nn
from .create_conv2d import create_conv2d
from .create_norm_act import convert_norm_act
class SeparableConvBnAct(nn.Module):
""" Separable Conv w/ trailing Norm and Activation
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False,
channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU,
apply_act=True, drop_block=None):
super(SeparableConvBnAct, self).__init__()
self.conv_dw = create_conv2d(
in_channels, int(in_channels * channel_multiplier), kernel_size,
stride=stride, dilation=dilation, padding=padding, depthwise=True)
self.conv_pw = create_conv2d(
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias)
norm_act_layer = convert_norm_act(norm_layer, act_layer)
self.bn = norm_act_layer(out_channels, apply_act=apply_act, drop_block=drop_block)
@property
def in_channels(self):
return self.conv_dw.in_channels
@property
def out_channels(self):
return self.conv_pw.out_channels
def forward(self, x):
x = self.conv_dw(x)
x = self.conv_pw(x)
if self.bn is not None:
x = self.bn(x)
return x
class SeparableConv2d(nn.Module):
""" Separable Conv
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False,
channel_multiplier=1.0, pw_kernel_size=1):
super(SeparableConv2d, self).__init__()
self.conv_dw = create_conv2d(
in_channels, int(in_channels * channel_multiplier), kernel_size,
stride=stride, dilation=dilation, padding=padding, depthwise=True)
self.conv_pw = create_conv2d(
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias)
@property
def in_channels(self):
return self.conv_dw.in_channels
@property
def out_channels(self):
return self.conv_pw.out_channels
def forward(self, x):
x = self.conv_dw(x)
x = self.conv_pw(x)
return x