80 lines
3.5 KiB
Python
80 lines
3.5 KiB
Python
|
|
import os.path
|
||
|
|
from data.base_dataset import BaseDataset, get_transform
|
||
|
|
from data.image_folder import make_dataset
|
||
|
|
from PIL import Image
|
||
|
|
import random
|
||
|
|
import util.util as util
|
||
|
|
|
||
|
|
|
||
|
|
class UnalignedDataset(BaseDataset):
|
||
|
|
"""
|
||
|
|
This dataset class can load unaligned/unpaired datasets.
|
||
|
|
|
||
|
|
It requires two directories to host training images from domain A '/path/to/data/trainA'
|
||
|
|
and from domain B '/path/to/data/trainB' respectively.
|
||
|
|
You can train the model with the dataset flag '--dataroot /path/to/data'.
|
||
|
|
Similarly, you need to prepare two directories:
|
||
|
|
'/path/to/data/testA' and '/path/to/data/testB' during test time.
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self, opt):
|
||
|
|
"""Initialize this dataset class.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
||
|
|
"""
|
||
|
|
BaseDataset.__init__(self, opt)
|
||
|
|
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA'
|
||
|
|
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB'
|
||
|
|
|
||
|
|
if opt.phase == "test" and not os.path.exists(self.dir_A) \
|
||
|
|
and os.path.exists(os.path.join(opt.dataroot, "valA")):
|
||
|
|
self.dir_A = os.path.join(opt.dataroot, "valA")
|
||
|
|
self.dir_B = os.path.join(opt.dataroot, "valB")
|
||
|
|
|
||
|
|
self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
|
||
|
|
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
|
||
|
|
self.A_size = len(self.A_paths) # get the size of dataset A
|
||
|
|
self.B_size = len(self.B_paths) # get the size of dataset B
|
||
|
|
|
||
|
|
def __getitem__(self, index):
|
||
|
|
"""Return a data point and its metadata information.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
index (int) -- a random integer for data indexing
|
||
|
|
|
||
|
|
Returns a dictionary that contains A, B, A_paths and B_paths
|
||
|
|
A (tensor) -- an image in the input domain
|
||
|
|
B (tensor) -- its corresponding image in the target domain
|
||
|
|
A_paths (str) -- image paths
|
||
|
|
B_paths (str) -- image paths
|
||
|
|
"""
|
||
|
|
A_path = self.A_paths[index % self.A_size] # make sure index is within then range
|
||
|
|
if self.opt.serial_batches: # make sure index is within then range
|
||
|
|
index_B = index % self.B_size
|
||
|
|
else: # randomize the index for domain B to avoid fixed pairs.
|
||
|
|
index_B = random.randint(0, self.B_size - 1)
|
||
|
|
B_path = self.B_paths[index_B]
|
||
|
|
A_img = Image.open(A_path).convert('RGB')
|
||
|
|
B_img = Image.open(B_path).convert('RGB')
|
||
|
|
|
||
|
|
# Apply image transformation
|
||
|
|
# For FastCUT mode, if in finetuning phase (learning rate is decaying),
|
||
|
|
# do not perform resize-crop data augmentation of CycleGAN.
|
||
|
|
# print('current_epoch', self.current_epoch)
|
||
|
|
is_finetuning = self.opt.isTrain and self.current_epoch > self.opt.n_epochs
|
||
|
|
modified_opt = util.copyconf(self.opt, load_size=self.opt.crop_size if is_finetuning else self.opt.load_size)
|
||
|
|
transform = get_transform(modified_opt)
|
||
|
|
A = transform(A_img)
|
||
|
|
B = transform(B_img)
|
||
|
|
|
||
|
|
return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path}
|
||
|
|
|
||
|
|
def __len__(self):
|
||
|
|
"""Return the total number of images in the dataset.
|
||
|
|
|
||
|
|
As we have two datasets with potentially different number of images,
|
||
|
|
we take a maximum of
|
||
|
|
"""
|
||
|
|
return max(self.A_size, self.B_size)
|