2025-02-23 15:37:59 +08:00
|
|
|
|
#!/bin/sh
|
2025-02-22 14:21:54 +08:00
|
|
|
|
# Train for video mode
|
2025-02-23 15:32:34 +08:00
|
|
|
|
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned_double --no_flip --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --lambda_motion 1.0 --atten_layers 1,3,5 --lr 0.00001
|
2025-02-22 14:21:54 +08:00
|
|
|
|
|
|
|
|
|
|
# Train for image mode
|
2025-02-23 15:32:34 +08:00
|
|
|
|
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --atten_layers 1,3,5 --lr 0.00001
|
|
|
|
|
|
|
|
|
|
|
|
python train.py \
|
|
|
|
|
|
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
2025-03-07 10:13:25 +08:00
|
|
|
|
--name UNIV_5 \
|
2025-02-23 15:32:34 +08:00
|
|
|
|
--dataset_mode unaligned_double \
|
2025-02-26 22:24:17 +08:00
|
|
|
|
--display_env UNIV \
|
2025-02-23 15:32:34 +08:00
|
|
|
|
--model roma_unsb \
|
2025-02-24 23:00:25 +08:00
|
|
|
|
--lambda_SB 1.0 \
|
2025-03-07 10:13:25 +08:00
|
|
|
|
--lambda_ctn 10 \
|
2025-02-23 15:32:34 +08:00
|
|
|
|
--lambda_inc 1.0 \
|
2025-03-07 10:13:25 +08:00
|
|
|
|
--lambda_global 6.0 \
|
|
|
|
|
|
--gamma_stride 20 \
|
|
|
|
|
|
--lr 0.000002 \
|
2025-03-09 21:41:52 +08:00
|
|
|
|
--gpu_id 0 \
|
2025-02-23 15:32:34 +08:00
|
|
|
|
--nce_idt False \
|
|
|
|
|
|
--netF mlp_sample \
|
2025-02-24 23:00:25 +08:00
|
|
|
|
--eta_ratio 0.4 \
|
2025-02-23 23:15:25 +08:00
|
|
|
|
--tau 0.01 \
|
2025-03-07 10:13:25 +08:00
|
|
|
|
--num_timesteps 5 \
|
2025-02-26 22:24:17 +08:00
|
|
|
|
--input_nc 3 \
|
|
|
|
|
|
--n_epochs 400 \
|
|
|
|
|
|
--n_epochs_decay 200 \
|
|
|
|
|
|
|
2025-03-07 10:13:25 +08:00
|
|
|
|
# exp1 num_timesteps=4 (已停)
|
|
|
|
|
|
# exp2 num_timesteps=5 (已停)
|
|
|
|
|
|
# exp3 --num_timesteps 5,--lambda_inc 8 ,--gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002 (已停)
|
|
|
|
|
|
# exp4 --num_timesteps 5,--lambda_inc 8 ,--gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002, ET_XY=self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time_idx, XtXt_2).reshape(-1), dim=0) ,并把GAN,CTN loss考虑到了A1和B1 (已停)
|
|
|
|
|
|
# exp5 基于 exp4 ,修改了 self.loss_global = self.calculate_similarity(self.mutil_real_A0_tokens, self.mutil_fake_B0_tokens) + self.calculate_similarity(mutil_real_A1_tokens, self.mutil_fake_B1_tokens) ,gpu_id 1 (已停)
|
|
|
|
|
|
# 上面几个实验效果都不好,实验结果都已经删除了,开的新的train_sbiv 对代码进行了调整,效果变得更好了。
|