340 lines
11 KiB
Python
340 lines
11 KiB
Python
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
|
# All rights reserved.
|
||
|
|
|
||
|
|
# This source code is licensed under the license found in the
|
||
|
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
# --------------------------------------------------------
|
||
|
|
# References:
|
||
|
|
# DeiT: https://github.com/facebookresearch/deit
|
||
|
|
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
||
|
|
# --------------------------------------------------------
|
||
|
|
|
||
|
|
import builtins
|
||
|
|
import datetime
|
||
|
|
import os
|
||
|
|
import time
|
||
|
|
from collections import defaultdict, deque
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.distributed as dist
|
||
|
|
from torch._six import inf
|
||
|
|
|
||
|
|
|
||
|
|
class SmoothedValue(object):
|
||
|
|
"""Track a series of values and provide access to smoothed values over a
|
||
|
|
window or the global series average.
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self, window_size=20, fmt=None):
|
||
|
|
if fmt is None:
|
||
|
|
fmt = "{median:.4f} ({global_avg:.4f})"
|
||
|
|
self.deque = deque(maxlen=window_size)
|
||
|
|
self.total = 0.0
|
||
|
|
self.count = 0
|
||
|
|
self.fmt = fmt
|
||
|
|
|
||
|
|
def update(self, value, n=1):
|
||
|
|
self.deque.append(value)
|
||
|
|
self.count += n
|
||
|
|
self.total += value * n
|
||
|
|
|
||
|
|
def synchronize_between_processes(self):
|
||
|
|
"""
|
||
|
|
Warning: does not synchronize the deque!
|
||
|
|
"""
|
||
|
|
if not is_dist_avail_and_initialized():
|
||
|
|
return
|
||
|
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
||
|
|
dist.barrier()
|
||
|
|
dist.all_reduce(t)
|
||
|
|
t = t.tolist()
|
||
|
|
self.count = int(t[0])
|
||
|
|
self.total = t[1]
|
||
|
|
|
||
|
|
@property
|
||
|
|
def median(self):
|
||
|
|
d = torch.tensor(list(self.deque))
|
||
|
|
return d.median().item()
|
||
|
|
|
||
|
|
@property
|
||
|
|
def avg(self):
|
||
|
|
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
||
|
|
return d.mean().item()
|
||
|
|
|
||
|
|
@property
|
||
|
|
def global_avg(self):
|
||
|
|
return self.total / self.count
|
||
|
|
|
||
|
|
@property
|
||
|
|
def max(self):
|
||
|
|
return max(self.deque)
|
||
|
|
|
||
|
|
@property
|
||
|
|
def value(self):
|
||
|
|
return self.deque[-1]
|
||
|
|
|
||
|
|
def __str__(self):
|
||
|
|
return self.fmt.format(
|
||
|
|
median=self.median,
|
||
|
|
avg=self.avg,
|
||
|
|
global_avg=self.global_avg,
|
||
|
|
max=self.max,
|
||
|
|
value=self.value)
|
||
|
|
|
||
|
|
|
||
|
|
class MetricLogger(object):
|
||
|
|
def __init__(self, delimiter="\t"):
|
||
|
|
self.meters = defaultdict(SmoothedValue)
|
||
|
|
self.delimiter = delimiter
|
||
|
|
|
||
|
|
def update(self, **kwargs):
|
||
|
|
for k, v in kwargs.items():
|
||
|
|
if v is None:
|
||
|
|
continue
|
||
|
|
if isinstance(v, torch.Tensor):
|
||
|
|
v = v.item()
|
||
|
|
assert isinstance(v, (float, int))
|
||
|
|
self.meters[k].update(v)
|
||
|
|
|
||
|
|
def __getattr__(self, attr):
|
||
|
|
if attr in self.meters:
|
||
|
|
return self.meters[attr]
|
||
|
|
if attr in self.__dict__:
|
||
|
|
return self.__dict__[attr]
|
||
|
|
raise AttributeError("'{}' object has no attribute '{}'".format(
|
||
|
|
type(self).__name__, attr))
|
||
|
|
|
||
|
|
def __str__(self):
|
||
|
|
loss_str = []
|
||
|
|
for name, meter in self.meters.items():
|
||
|
|
loss_str.append(
|
||
|
|
"{}: {}".format(name, str(meter))
|
||
|
|
)
|
||
|
|
return self.delimiter.join(loss_str)
|
||
|
|
|
||
|
|
def synchronize_between_processes(self):
|
||
|
|
for meter in self.meters.values():
|
||
|
|
meter.synchronize_between_processes()
|
||
|
|
|
||
|
|
def add_meter(self, name, meter):
|
||
|
|
self.meters[name] = meter
|
||
|
|
|
||
|
|
def log_every(self, iterable, print_freq, header=None):
|
||
|
|
i = 0
|
||
|
|
if not header:
|
||
|
|
header = ''
|
||
|
|
start_time = time.time()
|
||
|
|
end = time.time()
|
||
|
|
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
||
|
|
data_time = SmoothedValue(fmt='{avg:.4f}')
|
||
|
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
||
|
|
log_msg = [
|
||
|
|
header,
|
||
|
|
'[{0' + space_fmt + '}/{1}]',
|
||
|
|
'eta: {eta}',
|
||
|
|
'{meters}',
|
||
|
|
'time: {time}',
|
||
|
|
'data: {data}'
|
||
|
|
]
|
||
|
|
if torch.cuda.is_available():
|
||
|
|
log_msg.append('max mem: {memory:.0f}')
|
||
|
|
log_msg = self.delimiter.join(log_msg)
|
||
|
|
MB = 1024.0 * 1024.0
|
||
|
|
for obj in iterable:
|
||
|
|
data_time.update(time.time() - end)
|
||
|
|
yield obj
|
||
|
|
iter_time.update(time.time() - end)
|
||
|
|
if i % print_freq == 0 or i == len(iterable) - 1:
|
||
|
|
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
||
|
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
||
|
|
if torch.cuda.is_available():
|
||
|
|
print(log_msg.format(
|
||
|
|
i, len(iterable), eta=eta_string,
|
||
|
|
meters=str(self),
|
||
|
|
time=str(iter_time), data=str(data_time),
|
||
|
|
memory=torch.cuda.max_memory_allocated() / MB))
|
||
|
|
else:
|
||
|
|
print(log_msg.format(
|
||
|
|
i, len(iterable), eta=eta_string,
|
||
|
|
meters=str(self),
|
||
|
|
time=str(iter_time), data=str(data_time)))
|
||
|
|
i += 1
|
||
|
|
end = time.time()
|
||
|
|
total_time = time.time() - start_time
|
||
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||
|
|
print('{} Total time: {} ({:.4f} s / it)'.format(
|
||
|
|
header, total_time_str, total_time / len(iterable)))
|
||
|
|
|
||
|
|
|
||
|
|
def setup_for_distributed(is_master):
|
||
|
|
"""
|
||
|
|
This function disables printing when not in master process
|
||
|
|
"""
|
||
|
|
builtin_print = builtins.print
|
||
|
|
|
||
|
|
def print(*args, **kwargs):
|
||
|
|
force = kwargs.pop('force', False)
|
||
|
|
force = force or (get_world_size() > 8)
|
||
|
|
if is_master or force:
|
||
|
|
now = datetime.datetime.now().time()
|
||
|
|
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
||
|
|
builtin_print(*args, **kwargs)
|
||
|
|
|
||
|
|
builtins.print = print
|
||
|
|
|
||
|
|
|
||
|
|
def is_dist_avail_and_initialized():
|
||
|
|
if not dist.is_available():
|
||
|
|
return False
|
||
|
|
if not dist.is_initialized():
|
||
|
|
return False
|
||
|
|
return True
|
||
|
|
|
||
|
|
|
||
|
|
def get_world_size():
|
||
|
|
if not is_dist_avail_and_initialized():
|
||
|
|
return 1
|
||
|
|
return dist.get_world_size()
|
||
|
|
|
||
|
|
|
||
|
|
def get_rank():
|
||
|
|
if not is_dist_avail_and_initialized():
|
||
|
|
return 0
|
||
|
|
return dist.get_rank()
|
||
|
|
|
||
|
|
|
||
|
|
def is_main_process():
|
||
|
|
return get_rank() == 0
|
||
|
|
|
||
|
|
|
||
|
|
def save_on_master(*args, **kwargs):
|
||
|
|
if is_main_process():
|
||
|
|
torch.save(*args, **kwargs)
|
||
|
|
|
||
|
|
|
||
|
|
def init_distributed_mode(args):
|
||
|
|
if args.dist_on_itp:
|
||
|
|
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
||
|
|
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
||
|
|
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
||
|
|
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
||
|
|
os.environ['LOCAL_RANK'] = str(args.gpu)
|
||
|
|
os.environ['RANK'] = str(args.rank)
|
||
|
|
os.environ['WORLD_SIZE'] = str(args.world_size)
|
||
|
|
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
||
|
|
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
||
|
|
args.rank = int(os.environ["RANK"])
|
||
|
|
args.world_size = int(os.environ['WORLD_SIZE'])
|
||
|
|
args.gpu = int(os.environ['LOCAL_RANK'])
|
||
|
|
elif 'SLURM_PROCID' in os.environ:
|
||
|
|
args.rank = int(os.environ['SLURM_PROCID'])
|
||
|
|
args.gpu = args.rank % torch.cuda.device_count()
|
||
|
|
else:
|
||
|
|
print('Not using distributed mode')
|
||
|
|
setup_for_distributed(is_master=True) # hack
|
||
|
|
args.distributed = False
|
||
|
|
return
|
||
|
|
|
||
|
|
args.distributed = True
|
||
|
|
|
||
|
|
torch.cuda.set_device(args.gpu)
|
||
|
|
args.dist_backend = 'nccl'
|
||
|
|
print('| distributed init (rank {}): {}, gpu {}'.format(
|
||
|
|
args.rank, args.dist_url, args.gpu), flush=True)
|
||
|
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
||
|
|
world_size=args.world_size, rank=args.rank)
|
||
|
|
torch.distributed.barrier()
|
||
|
|
setup_for_distributed(args.rank == 0)
|
||
|
|
|
||
|
|
|
||
|
|
class NativeScalerWithGradNormCount:
|
||
|
|
state_dict_key = "amp_scaler"
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self._scaler = torch.cuda.amp.GradScaler()
|
||
|
|
|
||
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
||
|
|
self._scaler.scale(loss).backward(create_graph=create_graph)
|
||
|
|
if update_grad:
|
||
|
|
if clip_grad is not None:
|
||
|
|
assert parameters is not None
|
||
|
|
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
||
|
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
||
|
|
else:
|
||
|
|
self._scaler.unscale_(optimizer)
|
||
|
|
norm = get_grad_norm_(parameters)
|
||
|
|
self._scaler.step(optimizer)
|
||
|
|
self._scaler.update()
|
||
|
|
else:
|
||
|
|
norm = None
|
||
|
|
return norm
|
||
|
|
|
||
|
|
def state_dict(self):
|
||
|
|
return self._scaler.state_dict()
|
||
|
|
|
||
|
|
def load_state_dict(self, state_dict):
|
||
|
|
self._scaler.load_state_dict(state_dict)
|
||
|
|
|
||
|
|
|
||
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
||
|
|
if isinstance(parameters, torch.Tensor):
|
||
|
|
parameters = [parameters]
|
||
|
|
parameters = [p for p in parameters if p.grad is not None]
|
||
|
|
norm_type = float(norm_type)
|
||
|
|
if len(parameters) == 0:
|
||
|
|
return torch.tensor(0.)
|
||
|
|
device = parameters[0].grad.device
|
||
|
|
if norm_type == inf:
|
||
|
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
||
|
|
else:
|
||
|
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
||
|
|
return total_norm
|
||
|
|
|
||
|
|
|
||
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
|
||
|
|
output_dir = Path(args.output_dir)
|
||
|
|
epoch_name = str(epoch)
|
||
|
|
if loss_scaler is not None:
|
||
|
|
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
|
||
|
|
for checkpoint_path in checkpoint_paths:
|
||
|
|
to_save = {
|
||
|
|
'model': model_without_ddp.state_dict(),
|
||
|
|
'optimizer': optimizer.state_dict(),
|
||
|
|
'epoch': epoch,
|
||
|
|
'scaler': loss_scaler.state_dict(),
|
||
|
|
'args': args,
|
||
|
|
}
|
||
|
|
|
||
|
|
save_on_master(to_save, checkpoint_path)
|
||
|
|
else:
|
||
|
|
client_state = {'epoch': epoch}
|
||
|
|
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)
|
||
|
|
|
||
|
|
|
||
|
|
def load_model(args, model_without_ddp, optimizer, loss_scaler):
|
||
|
|
if args.resume:
|
||
|
|
if args.resume.startswith('https'):
|
||
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
||
|
|
args.resume, map_location='cpu', check_hash=True)
|
||
|
|
else:
|
||
|
|
checkpoint = torch.load(args.resume, map_location='cpu')
|
||
|
|
model_without_ddp.load_state_dict(checkpoint['model'])
|
||
|
|
print("Resume checkpoint %s" % args.resume)
|
||
|
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
|
||
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
||
|
|
args.start_epoch = checkpoint['epoch'] + 1
|
||
|
|
if 'scaler' in checkpoint:
|
||
|
|
loss_scaler.load_state_dict(checkpoint['scaler'])
|
||
|
|
print("With optim & sched!")
|
||
|
|
|
||
|
|
|
||
|
|
def all_reduce_mean(x):
|
||
|
|
world_size = get_world_size()
|
||
|
|
if world_size > 1:
|
||
|
|
x_reduce = torch.tensor(x).cuda()
|
||
|
|
dist.all_reduce(x_reduce)
|
||
|
|
x_reduce /= world_size
|
||
|
|
return x_reduce.item()
|
||
|
|
else:
|
||
|
|
return x
|