55 lines
2.2 KiB
Python
55 lines
2.2 KiB
Python
|
|
import random
|
||
|
|
import torch
|
||
|
|
|
||
|
|
|
||
|
|
class ImagePool():
|
||
|
|
"""This class implements an image buffer that stores previously generated images.
|
||
|
|
|
||
|
|
This buffer enables us to update discriminators using a history of generated images
|
||
|
|
rather than the ones produced by the latest generators.
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self, pool_size):
|
||
|
|
"""Initialize the ImagePool class
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
|
||
|
|
"""
|
||
|
|
self.pool_size = pool_size
|
||
|
|
if self.pool_size > 0: # create an empty pool
|
||
|
|
self.num_imgs = 0
|
||
|
|
self.images = []
|
||
|
|
|
||
|
|
def query(self, images):
|
||
|
|
"""Return an image from the pool.
|
||
|
|
|
||
|
|
Parameters:
|
||
|
|
images: the latest generated images from the generator
|
||
|
|
|
||
|
|
Returns images from the buffer.
|
||
|
|
|
||
|
|
By 50/100, the buffer will return input images.
|
||
|
|
By 50/100, the buffer will return images previously stored in the buffer,
|
||
|
|
and insert the current images to the buffer.
|
||
|
|
"""
|
||
|
|
if self.pool_size == 0: # if the buffer size is 0, do nothing
|
||
|
|
return images
|
||
|
|
return_images = []
|
||
|
|
for image in images:
|
||
|
|
image = torch.unsqueeze(image.data, 0)
|
||
|
|
if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer
|
||
|
|
self.num_imgs = self.num_imgs + 1
|
||
|
|
self.images.append(image)
|
||
|
|
return_images.append(image)
|
||
|
|
else:
|
||
|
|
p = random.uniform(0, 1)
|
||
|
|
if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer
|
||
|
|
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
|
||
|
|
tmp = self.images[random_id].clone()
|
||
|
|
self.images[random_id] = image
|
||
|
|
return_images.append(tmp)
|
||
|
|
else: # by another 50% chance, the buffer will return the current image
|
||
|
|
return_images.append(image)
|
||
|
|
return_images = torch.cat(return_images, 0) # collect all the images and return
|
||
|
|
return return_images
|