kun edit
This commit is contained in:
parent
8cd61d0503
commit
09d363ced6
@ -68,9 +68,6 @@ class ROMAModel(BaseModel):
|
||||
|
||||
# From UNSB
|
||||
self.netE = networks.define_D(opt.output_nc*4, opt.ndf, opt.netD, opt.n_layers_D, opt.normD, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)
|
||||
|
||||
# Deine another generator
|
||||
self.netG_2 = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
||||
|
||||
self.norm = F.softmax
|
||||
|
||||
@ -186,8 +183,6 @@ class ROMAModel(BaseModel):
|
||||
# 保存去噪后的中间结果 (real_A_noisy 等),供下一步做拼接
|
||||
self.real_A_noisy = Xt.detach()
|
||||
self.real_A_noisy2 = Xt2.detach()
|
||||
# 保存noisy_map
|
||||
self.noisy_map = self.real_A_noisy - self.real_A
|
||||
|
||||
# ============ 第三步:拼接输入并执行网络推理 =============
|
||||
bs = self.real_A0.size(0)
|
||||
@ -206,7 +201,23 @@ class ROMAModel(BaseModel):
|
||||
|
||||
self.fake_B0 = self.netG(self.real_A0)
|
||||
self.fake_B1 = self.netG(self.real_A1)
|
||||
|
||||
|
||||
if self.opt.phase == 'train':
|
||||
# 生成图像的梯度
|
||||
fake_gradient = torch.autograd.grad(self.fake_B0.sum(), self.fake_B0, create_graph=True)[0]
|
||||
# 梯度图
|
||||
self.weight_fake = self.cao.generate_weight_map(fake_gradient)
|
||||
|
||||
# 生成图像的CTN光流图
|
||||
self.f_content = self.ctn(self.weight_fake)
|
||||
|
||||
# 变换后的图片
|
||||
self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
|
||||
self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
|
||||
|
||||
# 经过第二次生成器
|
||||
self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, z_in)
|
||||
|
||||
if self.opt.isTrain:
|
||||
real_A0 = self.real_A0
|
||||
real_A1 = self.real_A1
|
||||
@ -214,98 +225,41 @@ class ROMAModel(BaseModel):
|
||||
real_B1 = self.real_B1
|
||||
fake_B0 = self.fake_B0
|
||||
fake_B1 = self.fake_B1
|
||||
warped_fake_B0_2=self.warped_fake_B0_2
|
||||
warped_fake_B0=self.warped_fake_B0
|
||||
|
||||
self.real_A0_resize = self.resize(real_A0)
|
||||
self.real_A1_resize = self.resize(real_A1)
|
||||
real_B0 = self.resize(real_B0)
|
||||
real_B1 = self.resize(real_B1)
|
||||
self.fake_B0_resize = self.resize(fake_B0)
|
||||
self.fake_B1_resize = self.resize(fake_B1)
|
||||
self.warped_fake_B0_2_resize = self.resize(warped_fake_B0_2)
|
||||
self.warped_fake_B0_resize = self.resize(warped_fake_B0)
|
||||
|
||||
self.mutil_real_A0_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_A1_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B0_tokens = self.netPreViT(real_B0, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B1_tokens = self.netPreViT(real_B1, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B0_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
|
||||
|
||||
|
||||
if self.opt.phase == 'train':
|
||||
# 真实图像的梯度
|
||||
real_gradient = torch.autograd.grad(self.real_B.sum(), self.real_B, create_graph=True)[0]
|
||||
# 生成图像的梯度
|
||||
fake_gradient = torch.autograd.grad(self.fake_B.sum(), self.fake_B, create_graph=True)[0]
|
||||
# 梯度图
|
||||
self.weight_real, self.weight_fake = self.cao.generate_weight_map(real_gradient, fake_gradient)
|
||||
|
||||
# 生成图像的CTN光流图
|
||||
self.f_content = self.ctn(self.weight_fake)
|
||||
|
||||
# 把前面生成后的图片再加上noisy_map
|
||||
self.fake_B0_2 = self.fake_B0 + self.noisy_map
|
||||
|
||||
# 变换后的图片
|
||||
wapped_fake_B0_2 = warp(self.fake_B0_2, self.f_content)
|
||||
|
||||
# 经过第二次生成器
|
||||
self.fake_B0_2 = self.netG_2(wapped_fake_B0_2, self.time, z_in)
|
||||
|
||||
|
||||
def tokens_concat(self, origin_tokens, adjacent_size):
|
||||
adj_size = adjacent_size
|
||||
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
|
||||
S = int(math.sqrt(token_num))
|
||||
if S * S != token_num:
|
||||
print('Error! Not a square!')
|
||||
token_map = origin_tokens.clone().reshape(B,S,S,C)
|
||||
cut_patch_list = []
|
||||
for i in range(0, S, adj_size):
|
||||
for j in range(0, S, adj_size):
|
||||
i_left = i
|
||||
i_right = i + adj_size + 1 if i + adj_size <= S else S + 1
|
||||
j_left = j
|
||||
j_right = j + adj_size if j + adj_size <= S else S + 1
|
||||
|
||||
cut_patch = token_map[:, i_left:i_right, j_left: j_right, :]
|
||||
cut_patch= cut_patch.reshape(B,-1,C)
|
||||
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
|
||||
cut_patch_list.append(cut_patch)
|
||||
|
||||
|
||||
result = torch.cat(cut_patch_list,dim=1)
|
||||
return result
|
||||
|
||||
|
||||
def cat_results(self, origin_tokens, adj_size_list):
|
||||
res_list = [origin_tokens]
|
||||
for ad_s in adj_size_list:
|
||||
cat_result = self.tokens_concat(origin_tokens, ad_s)
|
||||
res_list.append(cat_result)
|
||||
|
||||
result = torch.cat(res_list, dim=1)
|
||||
|
||||
return result
|
||||
self.mutil_warped_fake_B0_tokens = self.netPreViT(self.warped_fake_B0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B0_2_tokens = self.netPreViT(self.warped_fake_B0_2_resize, self.atten_layers, get_tokens=True)
|
||||
|
||||
|
||||
|
||||
def compute_D_loss(self):
|
||||
def compute_D_loss(self): #判别器还是没有改
|
||||
"""Calculate GAN loss for the discriminator"""
|
||||
|
||||
|
||||
lambda_D_ViT = self.opt.lambda_D_ViT
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer].detach()
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer].detach()
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens.detach()
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens.detach()
|
||||
|
||||
real_B0_tokens = self.mutil_real_B0_tokens[self.opt.which_D_layer]
|
||||
real_B1_tokens = self.mutil_real_B1_tokens[self.opt.which_D_layer]
|
||||
real_B0_tokens = self.mutil_real_B0_tokens
|
||||
real_B1_tokens = self.mutil_real_B1_tokens
|
||||
|
||||
|
||||
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
|
||||
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
|
||||
|
||||
|
||||
|
||||
real_B0_tokens = self.cat_results(real_B0_tokens, self.opt.adj_size_list)
|
||||
real_B1_tokens = self.cat_results(real_B1_tokens, self.opt.adj_size_list)
|
||||
|
||||
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||||
pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
||||
|
||||
@ -336,10 +290,9 @@ class ROMAModel(BaseModel):
|
||||
|
||||
if self.opt.lambda_GAN > 0.0:
|
||||
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer]
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer]
|
||||
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
|
||||
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens
|
||||
|
||||
pred_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||||
pred_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
||||
self.loss_G_GAN_ViT = (self.criterionGAN(pred_fake0_ViT, True) + self.criterionGAN(pred_fake1_ViT, True)) * 0.5 * self.opt.lambda_GAN
|
||||
@ -357,8 +310,8 @@ class ROMAModel(BaseModel):
|
||||
# eq.9
|
||||
ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0)
|
||||
self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY
|
||||
self.loss_SB += self.opt.tau * torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
|
||||
self.loss_SB += self.opt.tau * torch.mean((self.real_A_noisy2 - self.fake_B1) ** 2)
|
||||
self.loss_SB += torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
|
||||
|
||||
|
||||
|
||||
if self.opt.lambda_global > 0.0 or self.opt.lambda_spatial > 0.0:
|
||||
@ -368,8 +321,8 @@ class ROMAModel(BaseModel):
|
||||
|
||||
|
||||
if self.opt.lambda_ctn > 0.0:
|
||||
wapped_fake_B1 = warp(self.fake_B1, self.f_content) # use updated self.f_content
|
||||
self.l2_loss = F.mse_loss(self.fake_B0_2, wapped_fake_B1) * self.opt.lambda_ctn
|
||||
warped_fake_B1 = warp(self.fake_B0, self.f_content) # use updated self.f_content
|
||||
self.l2_loss = F.mse_loss(self.warped_fake_B0_2, warped_fake_B1) * self.opt.lambda_ctn
|
||||
else:
|
||||
self.l2_loss = 0.0
|
||||
|
||||
|
||||
@ -79,37 +79,27 @@ class ContentAwareOptimization(nn.Module):
|
||||
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
|
||||
return cosine_sim
|
||||
|
||||
def generate_weight_map(self, gradients_real, gradients_fake):
|
||||
def generate_weight_map(self, gradients_fake):
|
||||
"""
|
||||
生成内容感知权重图
|
||||
Args:
|
||||
gradients_real: [B, N, D] 真实图像判别器梯度
|
||||
gradients_fake: [B, N, D] 生成图像判别器梯度
|
||||
Returns:
|
||||
weight_real: [B, N] 真实图像权重图
|
||||
weight_fake: [B, N] 生成图像权重图
|
||||
"""
|
||||
# 计算真实图像块的余弦相似度
|
||||
cosine_real = self.compute_cosine_similarity(gradients_real) # [B, N] 公式5
|
||||
# 计算生成图像块的余弦相似度
|
||||
cosine_fake = self.compute_cosine_similarity(gradients_fake) # [B, N]
|
||||
|
||||
# 选择内容丰富的区域(余弦相似度最低的eta_ratio比例)
|
||||
k = int(self.eta_ratio * cosine_real.shape[1])
|
||||
|
||||
# 对真实图像生成权重图
|
||||
_, real_indices = torch.topk(-cosine_real, k, dim=1) # 选择最不相似的区域
|
||||
weight_real = torch.ones_like(cosine_real)
|
||||
for b in range(cosine_real.shape[0]):
|
||||
weight_real[b, real_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_real[b, real_indices[b]])) #公式6
|
||||
|
||||
k = int(self.eta_ratio * cosine_fake.shape[1])
|
||||
|
||||
# 对生成图像生成权重图(同理)
|
||||
_, fake_indices = torch.topk(-cosine_fake, k, dim=1)
|
||||
weight_fake = torch.ones_like(cosine_fake)
|
||||
for b in range(cosine_fake.shape[0]):
|
||||
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
|
||||
|
||||
return weight_real, weight_fake
|
||||
return weight_fake
|
||||
|
||||
def forward(self, D_real, D_fake, real_scores, fake_scores):
|
||||
"""
|
||||
@ -458,7 +448,7 @@ class CTNxModel(BaseModel):
|
||||
self.real_A_noisy = Xt.detach()
|
||||
self.real_A_noisy2 = Xt2.detach()
|
||||
# 保存noisy_map
|
||||
self.noisy_map = self.real_A_noisy - self.real_A
|
||||
self.noisy_map = self.real_A_noisy - self.real_A0
|
||||
|
||||
# ============ 第三步:拼接输入并执行网络推理 =============
|
||||
bs = self.mutil_real_A0_tokens.size(0)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user