添加image光流

This commit is contained in:
bishe 2025-02-24 22:49:38 +08:00
parent 26b770a3c1
commit 133f609e79
4 changed files with 74 additions and 15 deletions

View File

@ -68,3 +68,13 @@
================ Training Loss (Sun Feb 23 23:13:05 2025) ================
================ Training Loss (Sun Feb 23 23:13:59 2025) ================
================ Training Loss (Sun Feb 23 23:14:59 2025) ================
================ Training Loss (Mon Feb 24 21:53:50 2025) ================
================ Training Loss (Mon Feb 24 21:54:16 2025) ================
================ Training Loss (Mon Feb 24 21:54:50 2025) ================
================ Training Loss (Mon Feb 24 21:55:31 2025) ================
================ Training Loss (Mon Feb 24 21:56:10 2025) ================
================ Training Loss (Mon Feb 24 22:09:38 2025) ================
================ Training Loss (Mon Feb 24 22:10:16 2025) ================
================ Training Loss (Mon Feb 24 22:12:46 2025) ================
================ Training Loss (Mon Feb 24 22:13:04 2025) ================
================ Training Loss (Mon Feb 24 22:14:04 2025) ================

View File

@ -1,5 +1,6 @@
----------------- Options ---------------
atten_layers: 5
adj_size_list: [2, 4, 6, 8, 12]
atten_layers: 1,3,5
batch_size: 1
beta1: 0.5
beta2: 0.999

View File

@ -78,7 +78,7 @@ class ContentAwareOptimization(nn.Module):
# 计算余弦相似度
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
return cosine_sim
def generate_weight_map(self, gradients_fake, feature_shape):
"""
生成内容感知权重图修正空间维度
@ -100,16 +100,66 @@ class ContentAwareOptimization(nn.Module):
k = int(self.eta_ratio * cosine_fake.shape[1])
_, fake_indices = torch.topk(-cosine_fake, k, dim=1)
weight_fake = torch.ones_like(cosine_fake)
for b in range(cosine_fake.shape[0]):
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
# 重建空间维度 --------------------------------------------------
# 将权重从[B, N]转换为[B, H, W]
#print(f"Shape of weight_fake before view: {weight_fake.shape}")
#print(f"Shape of cosine_fake: {cosine_fake.shape}")
#print(f"H: {H}, W: {W}, N: {N}")
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # [B,1,H,W]
return weight_fake
def compute_cosine_similarity_image(self, gradients):
"""
计算每个空间位置梯度与平均梯度的余弦相似度 (图像版本)
Args:
gradients: [B, C, H, W] 判别器输出的梯度
Returns:
cosine_sim: [B, H, W] 每个空间位置的余弦相似度
"""
# 将空间维度展平,以便计算所有空间位置的平均梯度
B, C, H, W = gradients.shape
gradients_reshaped = gradients.view(B, C, H * W) # [B, C, N] where N = H*W
gradients_transposed = gradients_reshaped.transpose(1, 2) # [B, N, C] 将C放到最后一维方便计算空间位置的平均梯度
mean_grad = torch.mean(gradients_transposed, dim=1, keepdim=True) # [B, 1, C] 在空间位置维度上求平均,得到平均梯度 [B, 1, C]
# mean_grad 现在是所有空间位置的平均梯度,形状为 [B, 1, C]
# 为了计算余弦相似度,我们需要将 mean_grad 扩展到与 gradients_transposed 相同的空间维度
mean_grad_expanded = mean_grad.expand(-1, H * W, -1) # [B, N, C]
# 计算余弦相似度dim=2 表示在特征维度 (C) 上计算
cosine_sim = F.cosine_similarity(gradients_transposed, mean_grad_expanded, dim=2) # [B, N]
# 将 cosine_sim 重新reshape回 [B, H, W]
cosine_sim = cosine_sim.view(B, H, W)
return cosine_sim
def generate_weight_map_image(self, gradients_fake, feature_shape):
"""
生成内容感知权重图修正空间维度 - 图像版本
Args:
gradients_fake: [B, C, H, W] 生成图像判别器梯度
feature_shape: tuple [H, W] 判别器输出的特征图尺寸
Returns:
weight_fake: [B, 1, H, W] 生成图像权重图
"""
H, W = feature_shape
# 计算余弦相似度(图像版本)
cosine_fake = self.compute_cosine_similarity_image(gradients_fake) # [B, H, W]
# 生成权重图与原代码相同但现在cosine_fake是[B, H, W]
k = int(self.eta_ratio * H * W) # k 仍然是基于总的空间位置数量计算
_, fake_indices = torch.topk(-cosine_fake.view(cosine_fake.shape[0], -1), k, dim=1) # 将 cosine_fake 展平为 [B, N] 以使用 topk
weight_fake = torch.ones_like(cosine_fake).view(cosine_fake.shape[0], -1) # 初始化权重图,并展平为 [B, N]
for b in range(cosine_fake.shape[0]):
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake.view(cosine_fake.shape[0], -1)[b, fake_indices[b]]))
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # 重新 reshape 为 [B, H, W],并添加通道维度变为 [B, 1, H, W]
return weight_fake
def forward(self, D_real, D_fake, real_scores, fake_scores):
"""
计算内容感知对抗损失
@ -123,7 +173,7 @@ class ContentAwareOptimization(nn.Module):
"""
B, C, H, W = D_real.shape
N = H * W
shape_hw = [h, w]
shape_hw = [H, W]
# 注册钩子获取梯度
gradients_real = []
gradients_fake = []
@ -146,8 +196,8 @@ class ContentAwareOptimization(nn.Module):
total_loss.backward(retain_graph=True)
# 获取梯度数据
gradients_real = gradients_real[0] # [B, N, D]
gradients_fake = gradients_fake[0] # [B, N, D]
gradients_real = gradients_real[1] # [B, N, D]
gradients_fake = gradients_fake[1] # [B, N, D]
# 生成权重图
self.weight_real, self.weight_fake = self.generate_weight_map(gradients_fake, shape_hw )
@ -235,7 +285,7 @@ class RomaUnsbModel(BaseModel):
parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter')
parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer')
parser.add_argument('--adj_size_list', type=list, default=[2, 4, 6, 8, 12], help='different scales of perception field')
parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers')
parser.set_defaults(pool_size=0) # no image pooling
@ -373,7 +423,6 @@ class RomaUnsbModel(BaseModel):
self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def tokens_concat(self, origin_tokens, adjacent_size):
adj_size = adjacent_size
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
@ -394,10 +443,9 @@ class RomaUnsbModel(BaseModel):
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
cut_patch_list.append(cut_patch)
result = torch.cat(cut_patch_list,dim=1)
return result
def cat_results(self, origin_tokens, adj_size_list):
res_list = [origin_tokens]
for ad_s in adj_size_list:
@ -405,7 +453,6 @@ class RomaUnsbModel(BaseModel):
res_list.append(cat_result)
result = torch.cat(res_list, dim=1)
return result
def forward(self):
@ -468,10 +515,8 @@ class RomaUnsbModel(BaseModel):
self.real = torch.flip(self.real, [3])
self.realt = torch.flip(self.realt, [3])
print(f'fake_B0: {self.real_A0.shape}, fake_B1: {self.real_A1.shape}')
self.fake_B0 = self.netG(self.real_A0, self.time, z_in)
self.fake_B1 = self.netG(self.real_A1, self.time, z_in2)
print(f'fake_B0: {self.fake_B0.shape}, fake_B1: {self.fake_B1.shape}')
if self.opt.phase == 'train':
real_A0 = self.real_A0
@ -496,12 +541,15 @@ class RomaUnsbModel(BaseModel):
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
# [[1,576,768],[1,576,768],[1,576,768]]
# [3,576,768]
#self.mutil_real_A0_tokens = self.cat_results(self.mutil_real_A0_tokens[0], self.opt.adj_size_list)
#print(f'self.mutil_real_A0_tokens[0]:{self.mutil_real_A0_tokens[0].shape}')
shape_hw = list(self.real_A0_resize.shape[2:4])
# 生成图像的梯度
fake_gradient = torch.autograd.grad(self.mutil_fake_B0_tokens[0].sum(), self.mutil_fake_B0_tokens, create_graph=True)[0]
# 梯度图
self.weight_fake = self.cao.generate_weight_map(fake_gradient,shape_hw)
self.weight_fake = self.cao.generate_weight_map_image(fake_gradient, shape_hw)
# 生成图像的CTN光流图
self.f_content = self.ctn(self.weight_fake)