修改
This commit is contained in:
parent
c6cb68e700
commit
14ba81514f
Binary file not shown.
Binary file not shown.
@ -198,7 +198,7 @@ class RomaUnsbModel(BaseModel):
|
||||
"""配置 CTNx 模型的特定选项"""
|
||||
|
||||
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
|
||||
parser.add_argument('--lambda_SB', type=float, default=0.1, help='weight for SB loss')
|
||||
|
||||
parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm')
|
||||
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
|
||||
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
||||
@ -206,14 +206,8 @@ class RomaUnsbModel(BaseModel):
|
||||
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
|
||||
parser.add_argument('--local_nums', type=int, default=64, help='number of local patches')
|
||||
parser.add_argument('--side_length', type=int, default=7)
|
||||
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
|
||||
parser.add_argument('--nce_includes_all_negatives_from_minibatch',
|
||||
type=util.str2bool, nargs='?', const=True, default=False,
|
||||
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
|
||||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
||||
|
||||
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
|
||||
|
||||
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions')
|
||||
parser.add_argument('--gamma_stride', type=float, default=20, help='ratio of stride for computing the similarity matrix')
|
||||
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
|
||||
@ -321,88 +315,28 @@ class RomaUnsbModel(BaseModel):
|
||||
|
||||
def forward(self):
|
||||
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
||||
self.fake_B0 = self.netG(self.real_A0)
|
||||
self.fake_B1 = self.netG(self.real_A1)
|
||||
|
||||
# ============ 第一步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||||
tau = self.opt.tau
|
||||
T = self.opt.num_timesteps
|
||||
incs = np.array([0] + [1/(i+1) for i in range(T-1)])
|
||||
times = np.cumsum(incs)
|
||||
times = times / times[-1]
|
||||
times = 0.5 * times[-1] + 0.5 * times #[0.5,1]
|
||||
times = np.concatenate([np.zeros(1), times])
|
||||
times = torch.tensor(times).float().cuda()
|
||||
self.times = times
|
||||
bs = self.real_A0.size(0)
|
||||
time_idx = (torch.randint(T, size=[1]).cuda() * torch.ones(size=[1]).cuda()).long()
|
||||
self.time_idx = time_idx
|
||||
self.fake_B0_list = []
|
||||
self.fake_B1_list = []
|
||||
|
||||
with torch.no_grad():
|
||||
self.netG.eval()
|
||||
# ============ 第二步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||||
for t in range(self.time_idx.int().item() + 1):
|
||||
# 计算增量 delta 与 inter/scale,用于每个时间步的插值等
|
||||
if t > 0:
|
||||
delta = times[t] - times[t - 1]
|
||||
denom = times[-1] - times[t - 1]
|
||||
inter = (delta / denom).reshape(-1, 1, 1, 1)
|
||||
scale = (delta * (1 - delta / denom)).reshape(-1, 1, 1, 1)
|
||||
|
||||
# 对 Xt、Xt2 进行随机噪声更新
|
||||
Xt = self.real_A0 if (t == 0) else (1 - inter) * Xt + inter * Xt_1.detach() + \
|
||||
(scale * tau).sqrt() * torch.randn_like(Xt).to(self.real_A0.device)
|
||||
time_idx = (t * torch.ones(size=[self.real_A0.shape[0]]).to(self.real_A0.device)).long()
|
||||
z = torch.randn(size=[self.real_A0.shape[0], 4 * self.opt.ngf]).to(self.real_A0.device)
|
||||
time = times[time_idx]
|
||||
Xt_1 = self.netG(Xt.detach(), time, z)
|
||||
|
||||
Xt2 = self.real_A1 if (t == 0) else (1 - inter) * Xt2 + inter * Xt_12.detach() + \
|
||||
(scale * tau).sqrt() * torch.randn_like(Xt2).to(self.real_A1.device)
|
||||
time_idx = (t * torch.ones(size=[self.real_A1.shape[0]]).to(self.real_A1.device)).long()
|
||||
z = torch.randn(size=[self.real_A1.shape[0], 4 * self.opt.ngf]).to(self.real_A1.device)
|
||||
Xt_12 = self.netG(Xt2.detach(), time, z)
|
||||
self.fake_B0_list.append(Xt_1)
|
||||
self.fake_B1_list.append(Xt_12)
|
||||
|
||||
self.fake_B0_1 = self.fake_B0_list[0]
|
||||
self.fake_B1_1 = self.fake_B0_list[0]
|
||||
self.fake_B0 = self.fake_B0_list[-1]
|
||||
self.fake_B1 = self.fake_B1_list[-1]
|
||||
self.z_in = z
|
||||
self.z_in2 = z
|
||||
if self.opt.phase == 'train':
|
||||
if self.opt.isTrain:
|
||||
real_A0 = self.real_A0
|
||||
real_A1 = self.real_A1
|
||||
real_B0 = self.real_B0
|
||||
real_B1 = self.real_B1
|
||||
fake_B0 = self.fake_B0
|
||||
fake_B1 = self.fake_B1
|
||||
self.mutil_fake_B0_tokens_list = []
|
||||
self.mutil_fake_B1_tokens_list = []
|
||||
for fake_B0_t in self.fake_B0_list:
|
||||
fake_B0_t_resize = self.resize(fake_B0_t) # 调整到 ViT 输入尺寸
|
||||
tokens = self.netPreViT(fake_B0_t_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B0_tokens_list.append(tokens)
|
||||
for fake_B1_t in self.fake_B1_list:
|
||||
fake_B1_t_resize = self.resize(fake_B1_t)
|
||||
tokens = self.netPreViT(fake_B1_t_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B1_tokens_list.append(tokens)
|
||||
|
||||
self.real_A0_resize = self.resize(real_A0)
|
||||
self.real_A1_resize = self.resize(real_A1)
|
||||
real_B0 = self.resize(real_B0)
|
||||
real_B1 = self.resize(real_B1)
|
||||
self.fake_B0_resize = self.resize(fake_B0)
|
||||
self.fake_B1_resize = self.resize(fake_B1)
|
||||
|
||||
self.mutil_real_A0_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_A1_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B0_tokens = self.netPreViT(real_B0, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B1_tokens = self.netPreViT(real_B1, self.atten_layers, get_tokens=True)
|
||||
# [[1,576,768],[1,576,768],[1,576,768]]
|
||||
# [3,576,768]
|
||||
|
||||
self.mutil_fake_B0_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
|
||||
|
||||
def compute_D_loss(self):
|
||||
"""Calculate GAN loss with Content-Aware Optimization"""
|
||||
@ -414,9 +348,8 @@ class RomaUnsbModel(BaseModel):
|
||||
real_B1_tokens = self.mutil_real_B1_tokens[0]
|
||||
pred_real1, real_features1 = self.netD_ViT(real_B1_tokens) # scores, features
|
||||
|
||||
for fake0_token, fake1_token in zip(self.mutil_fake_B0_tokens_list, self.mutil_fake_B1_tokens_list):
|
||||
pre_fake0, fake_features0 = self.netD_ViT(fake0_token[0].detach())
|
||||
pre_fake1, fake_features1 = self.netD_ViT(fake1_token[0].detach())
|
||||
pre_fake0, fake_features0 = self.netD_ViT(self.mutil_fake_B0_tokens[0].detach())
|
||||
pre_fake1, fake_features1 = self.netD_ViT(self.mutil_fake_B1_tokens[0].detach())
|
||||
loss_cao0, self.weight_real0, self.weight_fake0 = self.cao(
|
||||
D_real=real_features0,
|
||||
D_fake=fake_features0,
|
||||
@ -433,8 +366,7 @@ class RomaUnsbModel(BaseModel):
|
||||
|
||||
|
||||
# ===== 综合损失 =====
|
||||
total_steps = len(self.fake_B0_list)
|
||||
self.loss_D_ViT = loss_cao * 0.5 * lambda_D_ViT/ total_steps
|
||||
self.loss_D_ViT = loss_cao * 0.5 * lambda_D_ViT
|
||||
|
||||
|
||||
# 记录损失值供可视化
|
||||
@ -458,8 +390,8 @@ class RomaUnsbModel(BaseModel):
|
||||
self.warped_fake_B1 = warp(self.fake_B1,self.f_content1)
|
||||
|
||||
# 经过第二次生成器
|
||||
self.warped_fake_B0_2 = self.netG(self.warped_real_A0, self.times[torch.zeros(size=[1]).cuda().long()], self.z_in)
|
||||
self.warped_fake_B1_2 = self.netG(self.warped_real_A1, self.times[torch.zeros(size=[1]).cuda().long()], self.z_in2)
|
||||
self.warped_fake_B0_2 = self.netG(self.warped_real_A0)
|
||||
self.warped_fake_B1_2 = self.netG(self.warped_real_A1)
|
||||
|
||||
warped_fake_B0_2=self.warped_fake_B0_2
|
||||
warped_fake_B1_2=self.warped_fake_B1_2
|
||||
@ -472,8 +404,8 @@ class RomaUnsbModel(BaseModel):
|
||||
|
||||
if self.opt.lambda_GAN > 0.0:
|
||||
|
||||
pred_fake0,_ = self.netD_ViT(self.mutil_fake_B0_tokens_list[-1][0])
|
||||
pred_fake1,_ = self.netD_ViT(self.mutil_fake_B1_tokens_list[-1][0])
|
||||
pred_fake0,_ = self.netD_ViT(self.mutil_fake_B0_tokens[0])
|
||||
pred_fake1,_ = self.netD_ViT(self.mutil_fake_B1_tokens[0])
|
||||
self.loss_G_GAN0 = self.criterionGAN(pred_fake0, True).mean()
|
||||
self.loss_G_GAN1 = self.criterionGAN(pred_fake1, True).mean()
|
||||
self.loss_G_GAN = (self.loss_G_GAN0 + self.loss_G_GAN1)*0.5
|
||||
|
||||
Binary file not shown.
Binary file not shown.
@ -36,7 +36,7 @@ class BaseOptions():
|
||||
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
|
||||
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
|
||||
parser.add_argument('--netD', type=str, default='basic_cond', choices=['basic_cond', 'basic', 'n_layers', 'pixel', 'patch', 'tilestylegan2', 'stylegan2'], help='specify discriminator architecture. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
|
||||
parser.add_argument('--netG', type=str, default='resnet_9blocks_cond', choices=['resnet_9blocks','resnet_9blocks_mask', 'resnet_6blocks', 'unet_256', 'unet_128', 'stylegan2', 'smallstylegan2', 'resnet_cat', 'resnet_9blocks_cond'], help='specify generator architecture')
|
||||
parser.add_argument('--netG', type=str, default='resnet_9blocks', choices=['resnet_9blocks','resnet_9blocks_mask', 'resnet_6blocks', 'unet_256', 'unet_128', 'stylegan2', 'smallstylegan2', 'resnet_cat', 'resnet_9blocks_cond'], help='specify generator architecture')
|
||||
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
|
||||
parser.add_argument('--normG', type=str, default='instance', choices=['instance', 'batch', 'none'], help='instance normalization or batch normalization for G')
|
||||
parser.add_argument('--normD', type=str, default='instance', choices=['instance', 'batch', 'none'], help='instance normalization or batch normalization for D')
|
||||
|
||||
17
scripts/traincp.sh
Normal file
17
scripts/traincp.sh
Normal file
@ -0,0 +1,17 @@
|
||||
python train.py \
|
||||
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
||||
--name cp_1 \
|
||||
--dataset_mode unaligned_double \
|
||||
--display_env CP \
|
||||
--model roma_unsb \
|
||||
--lambda_ctn 10 \
|
||||
--lambda_inc 1.0 \
|
||||
--lambda_global 6.0 \
|
||||
--lambda_spatial 6.0 \
|
||||
--gamma_stride 20 \
|
||||
--lr 0.000001 \
|
||||
--gpu_id 2 \
|
||||
--eta_ratio 0.4 \
|
||||
--n_epochs 100 \
|
||||
--n_epochs_decay 100 \
|
||||
# cp1 复现cptrans的效果
|
||||
Loading…
x
Reference in New Issue
Block a user