add file: with_logist_dataset.py
This commit is contained in:
parent
c6cb68e700
commit
2a321918c0
@ -13,7 +13,7 @@ import os.path
|
||||
IMG_EXTENSIONS = [
|
||||
'.jpg', '.JPG', '.jpeg', '.JPEG',
|
||||
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
|
||||
'.tif', '.TIF', '.tiff', '.TIFF',
|
||||
'.tif', '.TIF', '.tiff', '.TIFF', '.pth',
|
||||
]
|
||||
|
||||
|
||||
|
||||
86
data/with_logist_dataset.py
Normal file
86
data/with_logist_dataset.py
Normal file
@ -0,0 +1,86 @@
|
||||
import os.path
|
||||
from data.base_dataset import BaseDataset, get_transform
|
||||
from data.image_folder import make_dataset
|
||||
from PIL import Image
|
||||
import random
|
||||
import util.util as util
|
||||
from glob import glob
|
||||
import torch
|
||||
|
||||
class UnalignedDataset(BaseDataset):
|
||||
"""
|
||||
This dataset class can load unaligned/unpaired datasets.
|
||||
|
||||
It requires two directories to host training images from domain A '/path/to/data/trainA'
|
||||
and from domain B '/path/to/data/trainB' respectively.
|
||||
You can train the model with the dataset flag '--dataroot /path/to/data'.
|
||||
Similarly, you need to prepare two directories:
|
||||
'/path/to/data/testA' and '/path/to/data/testB' during test time.
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
"""Initialize this dataset class.
|
||||
|
||||
Parameters:
|
||||
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
||||
"""
|
||||
BaseDataset.__init__(self, opt)
|
||||
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA'
|
||||
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB'
|
||||
self.dir_A_logi = '/home/openxs/kunyu/datasets/InfraredCity-Lite/Single/Monitor/trainA_dino'
|
||||
|
||||
if opt.phase == "test" and not os.path.exists(self.dir_A) \
|
||||
and os.path.exists(os.path.join(opt.dataroot, "valA")):
|
||||
self.dir_A = os.path.join(opt.dataroot, "valA")
|
||||
self.dir_B = os.path.join(opt.dataroot, "valB")
|
||||
|
||||
self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
|
||||
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
|
||||
self.A_logi_paths = sorted(make_dataset(self.dir_A_logi, opt.max_dataset_size))
|
||||
self.A_size = len(self.A_paths) # get the size of dataset A
|
||||
self.B_size = len(self.B_paths) # get the size of dataset B
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""Return a data point and its metadata information.
|
||||
|
||||
Parameters:
|
||||
index (int) -- a random integer for data indexing
|
||||
|
||||
Returns a dictionary that contains A, B, A_paths and B_paths
|
||||
A (tensor) -- an image in the input domain
|
||||
B (tensor) -- its corresponding image in the target domain
|
||||
A_paths (str) -- image paths
|
||||
B_paths (str) -- image paths
|
||||
"""
|
||||
A_path = self.A_paths[index % self.A_size] # make sure index is within then range
|
||||
A_logi_path = self.A_logi_paths[index % self.A_size]
|
||||
if self.opt.serial_batches: # make sure index is within then range
|
||||
index_B = index % self.B_size
|
||||
else: # randomize the index for domain B to avoid fixed pairs.
|
||||
index_B = random.randint(0, self.B_size - 1)
|
||||
B_path = self.B_paths[index_B]
|
||||
A_img = Image.open(A_path).convert('RGB')
|
||||
B_img = Image.open(B_path).convert('RGB')
|
||||
|
||||
# shape: [1, 150, 256, 256]
|
||||
A_logi = torch.load(A_logi_path, map_location=f'cuda:{self.opt.gpu_id}')
|
||||
|
||||
# Apply image transformation
|
||||
# For FastCUT mode, if in finetuning phase (learning rate is decaying),
|
||||
# do not perform resize-crop data augmentation of CycleGAN.
|
||||
# print('current_epoch', self.current_epoch)
|
||||
is_finetuning = self.opt.isTrain and self.current_epoch > self.opt.n_epochs
|
||||
modified_opt = util.copyconf(self.opt, load_size=self.opt.crop_size if is_finetuning else self.opt.load_size)
|
||||
transform = get_transform(modified_opt)
|
||||
A = transform(A_img)
|
||||
B = transform(B_img)
|
||||
|
||||
return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path, 'A_logi': A_logi, 'A_logi_paths': A_logi_path}
|
||||
|
||||
def __len__(self):
|
||||
"""Return the total number of images in the dataset.
|
||||
|
||||
As we have two datasets with potentially different number of images,
|
||||
we take a maximum of
|
||||
"""
|
||||
return max(self.A_size, self.B_size)
|
||||
Loading…
x
Reference in New Issue
Block a user