在判别器中引入attention
This commit is contained in:
parent
e0dc08030c
commit
e9c0f5ffcb
@ -1401,23 +1401,32 @@ class UnetSkipConnectionBlock(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class MLPDiscriminator(nn.Module):
|
class MLPDiscriminator(nn.Module):
|
||||||
def __init__(self, in_feat=768, hid_feat = 768, out_feat = 768, dropout = 0.):
|
def __init__(self, in_feat=768, hid_feat=512, out_feat=768, num_heads=1):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if not hid_feat:
|
# 自注意力层,加入Dropout
|
||||||
hid_feat = in_feat
|
self.attention = nn.MultiheadAttention(embed_dim=in_feat, num_heads=num_heads, dropout=0.1)
|
||||||
if not out_feat:
|
# 加深加宽的MLP,加入Dropout
|
||||||
out_feat = in_feat
|
self.mlp = nn.Sequential(
|
||||||
self.linear1 = nn.Linear(in_feat, hid_feat)
|
nn.Linear(in_feat, hid_feat), # 768 -> 512
|
||||||
self.activation = nn.GELU()
|
nn.ReLU(),
|
||||||
self.linear2 = nn.Linear(hid_feat, out_feat)
|
nn.Dropout(0.3),
|
||||||
self.dropout = nn.Dropout(dropout)
|
nn.Linear(hid_feat, hid_feat * 2), # 512 -> 1024
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Dropout(0.3),
|
||||||
|
nn.Linear(hid_feat * 2, hid_feat), # 1024 -> 512
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Dropout(0.3),
|
||||||
|
nn.Linear(hid_feat, out_feat), # 512 -> 768
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Dropout(0.3),
|
||||||
|
nn.Linear(out_feat, 1) # 768 -> 1
|
||||||
|
)
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
features = self.linear1(x) # 中间特征,即 D_real 或 D_fake
|
attn_output, attn_weights = self.attention(x, x, x) # [B, N, D], [B, N, N]
|
||||||
x = self.activation(features)
|
attn_weights = attn_weights.mean(dim=1) # [B, N]
|
||||||
x = self.dropout(x)
|
pred = self.mlp(attn_output.mean(dim=1)) # [B, 1]
|
||||||
scores = self.linear2(x) # 最终分数,即 real_scores 或 fake_scores
|
return pred, attn_weights
|
||||||
return scores, features
|
|
||||||
|
|
||||||
class NLayerDiscriminator(nn.Module):
|
class NLayerDiscriminator(nn.Module):
|
||||||
"""Defines a PatchGAN discriminator"""
|
"""Defines a PatchGAN discriminator"""
|
||||||
|
|||||||
@ -67,62 +67,39 @@ class ContentAwareOptimization(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.lambda_inc = lambda_inc
|
self.lambda_inc = lambda_inc
|
||||||
self.eta_ratio = eta_ratio
|
self.eta_ratio = eta_ratio
|
||||||
self.gradients_real = []
|
|
||||||
self.gradients_fake = []
|
|
||||||
|
|
||||||
|
|
||||||
def compute_cosine_similarity(self, gradients):
|
|
||||||
mean_grad = torch.mean(gradients, dim=1, keepdim=True)
|
|
||||||
return F.cosine_similarity(gradients, mean_grad, dim=2)
|
|
||||||
|
|
||||||
def generate_weight_map(self, gradients_real, gradients_fake):
|
|
||||||
# 计算余弦相似度
|
|
||||||
cosine_real = self.compute_cosine_similarity(gradients_real)
|
|
||||||
cosine_fake = self.compute_cosine_similarity(gradients_fake)
|
|
||||||
|
|
||||||
# 生成权重图(优化实现)
|
|
||||||
def _get_weights(cosine):
|
|
||||||
k = int(self.eta_ratio * cosine.shape[1])
|
|
||||||
_, indices = torch.topk(-cosine, k, dim=1)
|
|
||||||
weights = torch.ones_like(cosine)
|
|
||||||
weights.scatter_(1, indices, self.lambda_inc / (1e-6 + torch.abs(cosine.gather(1, indices))))
|
|
||||||
return weights
|
|
||||||
|
|
||||||
weight_real = _get_weights(cosine_real)
|
|
||||||
weight_fake = _get_weights(cosine_fake)
|
|
||||||
return weight_real, weight_fake
|
|
||||||
|
|
||||||
def forward(self, D_real, D_fake, real_scores, fake_scores):
|
|
||||||
# 清空梯度缓存
|
|
||||||
self.gradients_real.clear()
|
|
||||||
self.gradients_fake.clear()
|
|
||||||
self.criterionGAN=networks.GANLoss('lsgan').cuda()
|
self.criterionGAN=networks.GANLoss('lsgan').cuda()
|
||||||
# 注册钩子捕获梯度
|
|
||||||
hook_real = lambda grad: self.gradients_real.append(grad.detach())
|
|
||||||
hook_fake = lambda grad: self.gradients_fake.append(grad.detach())
|
|
||||||
D_real.register_hook(hook_real)
|
|
||||||
D_fake.register_hook(hook_fake)
|
|
||||||
|
|
||||||
# 触发梯度计算(保留计算图)
|
def generate_weight_map(self, attn_real, attn_fake):
|
||||||
(real_scores.mean() + fake_scores.mean()).backward(retain_graph=True)
|
# attn_real, attn_fake: [B, N],自注意力权重
|
||||||
|
# 归一化注意力权重
|
||||||
|
weight_real = F.normalize(attn_real, p=1, dim=1) # [B, N]
|
||||||
|
weight_fake = F.normalize(attn_fake, p=1, dim=1) # [B, N]
|
||||||
|
|
||||||
# 获取梯度并调整维度
|
# 对真实图像权重处理
|
||||||
grad_real = self.gradients_real[0].flatten(1) # [B, N, D] → [B, N*D]
|
k = int(self.eta_ratio * weight_real.shape[1])
|
||||||
grad_fake = self.gradients_fake[0].flatten(1)
|
values_real, indices_real = torch.topk(weight_real, k, dim=1)
|
||||||
|
weight_real_enhanced = torch.ones_like(weight_real)
|
||||||
|
weight_real_enhanced.scatter_(1, indices_real, self.lambda_inc / (values_real + 1e-6))
|
||||||
|
# 对生成图像权重处理
|
||||||
|
values_fake, indices_fake = torch.topk(weight_fake, k, dim=1)
|
||||||
|
weight_fake_enhanced = torch.ones_like(weight_fake)
|
||||||
|
weight_fake_enhanced.scatter_(1, indices_fake, self.lambda_inc / (values_fake + 1e-6))
|
||||||
|
|
||||||
|
return weight_real_enhanced, weight_fake_enhanced
|
||||||
|
|
||||||
|
def forward(self,real_scores, fake_scores, attn_real, attn_fake):
|
||||||
|
# real_scores, fake_scores: 判别器预测得分 [B, 1]
|
||||||
|
# attn_real, attn_fake: 自注意力权重 [B, N]
|
||||||
|
|
||||||
# 生成权重图
|
# 生成权重图
|
||||||
weight_real, weight_fake = self.generate_weight_map(
|
weight_real, weight_fake = self.generate_weight_map(attn_real, attn_fake)
|
||||||
grad_real.view(*D_real.shape),
|
|
||||||
grad_fake.view(*D_fake.shape)
|
|
||||||
)
|
|
||||||
|
|
||||||
# 正确应用权重到对数概率(论文公式7)
|
# 应用权重到 GAN 损失
|
||||||
loss_co_real = torch.mean(weight_real * self.criterionGAN(real_scores , True))
|
loss_co_real = torch.mean(weight_real * self.criterionGAN(real_scores, True))
|
||||||
loss_co_fake = torch.mean(weight_fake * self.criterionGAN(fake_scores , False))
|
loss_co_fake = torch.mean(weight_fake * self.criterionGAN(fake_scores, False))
|
||||||
|
|
||||||
# 总损失(注意符号:判别器需最大化该损失)
|
|
||||||
loss_co_adv = (loss_co_real + loss_co_fake)*0.5
|
|
||||||
|
|
||||||
|
# 总损失
|
||||||
|
loss_co_adv = (loss_co_real + loss_co_fake) * 0.5
|
||||||
return loss_co_adv, weight_real, weight_fake
|
return loss_co_adv, weight_real, weight_fake
|
||||||
|
|
||||||
class ContentAwareTemporalNorm(nn.Module):
|
class ContentAwareTemporalNorm(nn.Module):
|
||||||
@ -132,18 +109,19 @@ class ContentAwareTemporalNorm(nn.Module):
|
|||||||
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
||||||
|
|
||||||
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
|
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
|
||||||
"""
|
# 如果 weight_patch 是 [N, 1] 形状(例如 [576, 1]),添加批次维度
|
||||||
将patch级别的权重图上采样到目标分辨率
|
if weight_patch.dim() == 2 and weight_patch.shape[1] == 1:
|
||||||
Args:
|
weight_patch = weight_patch.unsqueeze(0) # 变为 [1, 576, 1]
|
||||||
weight_patch: [B, 1, 24, 24] 来自ViT的patch权重图
|
|
||||||
target_size: 目标分辨率 (H, W)
|
|
||||||
Returns:
|
|
||||||
weight_full: [B, 1, 256, 256] 上采样后的全分辨率权重图
|
|
||||||
"""
|
|
||||||
# 使用双线性插值上采样
|
|
||||||
B = weight_patch.shape[0]
|
|
||||||
weight_patch = weight_patch.view(B, 1, 24, 24)
|
|
||||||
|
|
||||||
|
# 获取调整后的形状
|
||||||
|
B, N, _ = weight_patch.shape # 例如 B=1, N=576
|
||||||
|
if N != 576:
|
||||||
|
raise ValueError(f"预期 patch 数量 N=576 (24x24),但实际得到 N={N}")
|
||||||
|
|
||||||
|
# 重塑为 [B, 1, 24, 24]
|
||||||
|
weight_patch = weight_patch.view(B, 1, 24, 24) # [1, 1, 24, 24]
|
||||||
|
|
||||||
|
# 使用双线性插值上采样到目标大小
|
||||||
weight_full = F.interpolate(
|
weight_full = F.interpolate(
|
||||||
weight_patch,
|
weight_patch,
|
||||||
size=target_size,
|
size=target_size,
|
||||||
@ -151,8 +129,7 @@ class ContentAwareTemporalNorm(nn.Module):
|
|||||||
align_corners=False
|
align_corners=False
|
||||||
)
|
)
|
||||||
|
|
||||||
# 对每个16x16的patch内部保持权重一致(可选)
|
# 可选:保持每个 16x16 patch 内部权重一致
|
||||||
# 通过平均池化再扩展,消除插值引入的渐变
|
|
||||||
weight_full = F.avg_pool2d(weight_full, kernel_size=16, stride=16)
|
weight_full = F.avg_pool2d(weight_full, kernel_size=16, stride=16)
|
||||||
weight_full = F.interpolate(weight_full, scale_factor=16, mode='nearest')
|
weight_full = F.interpolate(weight_full, scale_factor=16, mode='nearest')
|
||||||
|
|
||||||
@ -167,6 +144,7 @@ class ContentAwareTemporalNorm(nn.Module):
|
|||||||
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
||||||
"""
|
"""
|
||||||
# 上采样权重图到全分辨率
|
# 上采样权重图到全分辨率
|
||||||
|
|
||||||
weight_full = self.upsample_weight_map(weight_map) # [B,1,384,384]
|
weight_full = self.upsample_weight_map(weight_map) # [B,1,384,384]
|
||||||
|
|
||||||
# 1. 归一化权重图
|
# 1. 归一化权重图
|
||||||
@ -342,31 +320,25 @@ class RomaUnsbModel(BaseModel):
|
|||||||
"""Calculate GAN loss with Content-Aware Optimization"""
|
"""Calculate GAN loss with Content-Aware Optimization"""
|
||||||
lambda_D_ViT = self.opt.lambda_D_ViT
|
lambda_D_ViT = self.opt.lambda_D_ViT
|
||||||
|
|
||||||
loss_cao = 0.0
|
pred_real0, attn_real0 = self.netD_ViT(self.mutil_real_B0_tokens[0]) # scores, features
|
||||||
real_B0_tokens = self.mutil_real_B0_tokens[0]
|
pred_real1, attn_real1 = self.netD_ViT(self.mutil_real_B1_tokens[0]) # scores, features
|
||||||
pred_real0, real_features0 = self.netD_ViT(real_B0_tokens) # scores, features
|
|
||||||
real_B1_tokens = self.mutil_real_B1_tokens[0]
|
|
||||||
pred_real1, real_features1 = self.netD_ViT(real_B1_tokens) # scores, features
|
|
||||||
|
|
||||||
pre_fake0, fake_features0 = self.netD_ViT(self.mutil_fake_B0_tokens[0].detach())
|
pred_fake0, attn_fake0 = self.netD_ViT(self.mutil_fake_B0_tokens[0].detach())
|
||||||
pre_fake1, fake_features1 = self.netD_ViT(self.mutil_fake_B1_tokens[0].detach())
|
pred_fake1, attn_fake1 = self.netD_ViT(self.mutil_fake_B1_tokens[0].detach())
|
||||||
loss_cao0, self.weight_real0, self.weight_fake0 = self.cao(
|
loss_cao0, self.weight_real0, self.weight_fake0 = self.cao(
|
||||||
D_real=real_features0,
|
|
||||||
D_fake=fake_features0,
|
|
||||||
real_scores=pred_real0,
|
real_scores=pred_real0,
|
||||||
fake_scores=pre_fake0
|
fake_scores=pred_fake0,
|
||||||
|
attn_real=attn_real0,
|
||||||
|
attn_fake=attn_fake0
|
||||||
)
|
)
|
||||||
loss_cao1, self.weight_real1, self.weight_fake1 = self.cao(
|
loss_cao1, self.weight_real1, self.weight_fake1 = self.cao(
|
||||||
D_real=real_features1,
|
|
||||||
D_fake=fake_features1,
|
|
||||||
real_scores=pred_real1,
|
real_scores=pred_real1,
|
||||||
fake_scores=pre_fake1
|
fake_scores=pred_fake1,
|
||||||
|
attn_real=attn_real1,
|
||||||
|
attn_fake=attn_fake1
|
||||||
)
|
)
|
||||||
loss_cao += loss_cao0 + loss_cao1
|
|
||||||
|
|
||||||
|
self.loss_D_ViT = (loss_cao0 + loss_cao1) * 0.5 * lambda_D_ViT
|
||||||
# ===== 综合损失 =====
|
|
||||||
self.loss_D_ViT = loss_cao * 0.5 * lambda_D_ViT
|
|
||||||
|
|
||||||
|
|
||||||
# 记录损失值供可视化
|
# 记录损失值供可视化
|
||||||
|
|||||||
@ -1,18 +1,20 @@
|
|||||||
python train.py \
|
python train.py \
|
||||||
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
|
||||||
--name cp_2 \
|
--name cp_3 \
|
||||||
--dataset_mode unaligned_double \
|
--dataset_mode unaligned_double \
|
||||||
--display_env CP \
|
--display_env CP \
|
||||||
--model roma_unsb \
|
--model roma_unsb \
|
||||||
--lambda_ctn 10 \
|
--lambda_ctn 10 \
|
||||||
--lambda_inc 1.0 \
|
--lambda_inc 8.0 \
|
||||||
|
--eta_ratio 0.4 \
|
||||||
--lambda_global 6.0 \
|
--lambda_global 6.0 \
|
||||||
--lambda_spatial 6.0 \
|
--lambda_spatial 6.0 \
|
||||||
--gamma_stride 20 \
|
--gamma_stride 20 \
|
||||||
--lr 0.000002 \
|
--lr 0.00002 \
|
||||||
--gpu_id 0 \
|
--gpu_id 3 \
|
||||||
--eta_ratio 0.4 \
|
--eta_ratio 0.4 \
|
||||||
--n_epochs 100 \
|
--n_epochs 100 \
|
||||||
--n_epochs_decay 100 \
|
--n_epochs_decay 100 \
|
||||||
# cp1 复现cptrans的效果 --lr 0.000001
|
# cp1 复现cptrans的效果 --lr 0.000001
|
||||||
# cp2 修了一下cp1的代码,--lr 0.000002
|
# cp2 修了一下cp1的代码,--lr 0.000002
|
||||||
|
## cp3 将梯度加强修改为attention加强,--lr 0.000005,--lambda_inc 8.0,--gpu_id 3(基于cp2的sh)
|
||||||
Loading…
x
Reference in New Issue
Block a user