Compare commits

..

6 Commits
exp ... main

Author SHA1 Message Date
bishe
133f609e79 添加image光流 2025-02-24 22:49:38 +08:00
Kunyu_Lee
26b770a3c1 Merge branch 'main' of http://47.108.14.56:4000/123456/roma_unsb 2025-02-24 21:45:06 +08:00
Kunyu_Lee
9850183607 原始ROMA 2025-02-24 21:44:52 +08:00
bishe
e67b0f2511 最新的修改 2025-02-24 21:28:21 +08:00
bishe
7af2de920c renew 2025-02-24 21:13:36 +08:00
Kunyu_Lee
55b9db967a 最新的修改 2025-02-24 20:39:59 +08:00
11 changed files with 724 additions and 177 deletions

5
.gitignore vendored
View File

@ -1,5 +0,0 @@
checkpoints/
*.log
*.pth
*.ckpt
__pycache__/

View File

@ -0,0 +1,80 @@
================ Training Loss (Sun Feb 23 15:46:44 2025) ================
================ Training Loss (Sun Feb 23 15:52:29 2025) ================
================ Training Loss (Sun Feb 23 16:00:07 2025) ================
================ Training Loss (Sun Feb 23 16:02:40 2025) ================
================ Training Loss (Sun Feb 23 16:05:19 2025) ================
================ Training Loss (Sun Feb 23 16:06:44 2025) ================
================ Training Loss (Sun Feb 23 16:09:38 2025) ================
================ Training Loss (Sun Feb 23 16:44:56 2025) ================
================ Training Loss (Sun Feb 23 16:49:46 2025) ================
================ Training Loss (Sun Feb 23 16:51:03 2025) ================
================ Training Loss (Sun Feb 23 16:51:23 2025) ================
================ Training Loss (Sun Feb 23 18:04:02 2025) ================
================ Training Loss (Sun Feb 23 18:04:39 2025) ================
================ Training Loss (Sun Feb 23 18:05:17 2025) ================
================ Training Loss (Sun Feb 23 18:06:40 2025) ================
================ Training Loss (Sun Feb 23 18:11:48 2025) ================
================ Training Loss (Sun Feb 23 18:13:31 2025) ================
================ Training Loss (Sun Feb 23 18:14:11 2025) ================
================ Training Loss (Sun Feb 23 18:14:29 2025) ================
================ Training Loss (Sun Feb 23 18:16:27 2025) ================
================ Training Loss (Sun Feb 23 18:16:44 2025) ================
================ Training Loss (Sun Feb 23 18:20:39 2025) ================
================ Training Loss (Sun Feb 23 18:21:44 2025) ================
================ Training Loss (Sun Feb 23 18:35:27 2025) ================
================ Training Loss (Sun Feb 23 18:39:21 2025) ================
================ Training Loss (Sun Feb 23 18:40:15 2025) ================
================ Training Loss (Sun Feb 23 18:41:15 2025) ================
================ Training Loss (Sun Feb 23 18:47:46 2025) ================
================ Training Loss (Sun Feb 23 18:48:36 2025) ================
================ Training Loss (Sun Feb 23 18:50:20 2025) ================
================ Training Loss (Sun Feb 23 18:51:50 2025) ================
================ Training Loss (Sun Feb 23 18:58:45 2025) ================
================ Training Loss (Sun Feb 23 18:59:52 2025) ================
================ Training Loss (Sun Feb 23 19:03:05 2025) ================
================ Training Loss (Sun Feb 23 19:03:57 2025) ================
================ Training Loss (Sun Feb 23 21:11:47 2025) ================
================ Training Loss (Sun Feb 23 21:17:10 2025) ================
================ Training Loss (Sun Feb 23 21:20:14 2025) ================
================ Training Loss (Sun Feb 23 21:29:03 2025) ================
================ Training Loss (Sun Feb 23 21:34:57 2025) ================
================ Training Loss (Sun Feb 23 21:35:26 2025) ================
================ Training Loss (Sun Feb 23 22:28:43 2025) ================
================ Training Loss (Sun Feb 23 22:29:04 2025) ================
================ Training Loss (Sun Feb 23 22:29:52 2025) ================
================ Training Loss (Sun Feb 23 22:30:40 2025) ================
================ Training Loss (Sun Feb 23 22:33:48 2025) ================
================ Training Loss (Sun Feb 23 22:39:16 2025) ================
================ Training Loss (Sun Feb 23 22:39:48 2025) ================
================ Training Loss (Sun Feb 23 22:41:34 2025) ================
================ Training Loss (Sun Feb 23 22:42:01 2025) ================
================ Training Loss (Sun Feb 23 22:44:17 2025) ================
================ Training Loss (Sun Feb 23 22:45:53 2025) ================
================ Training Loss (Sun Feb 23 22:46:48 2025) ================
================ Training Loss (Sun Feb 23 22:47:42 2025) ================
================ Training Loss (Sun Feb 23 22:49:44 2025) ================
================ Training Loss (Sun Feb 23 22:50:29 2025) ================
================ Training Loss (Sun Feb 23 22:51:47 2025) ================
================ Training Loss (Sun Feb 23 22:55:56 2025) ================
================ Training Loss (Sun Feb 23 22:56:19 2025) ================
================ Training Loss (Sun Feb 23 22:57:58 2025) ================
================ Training Loss (Sun Feb 23 22:59:09 2025) ================
================ Training Loss (Sun Feb 23 23:02:36 2025) ================
================ Training Loss (Sun Feb 23 23:03:56 2025) ================
================ Training Loss (Sun Feb 23 23:09:21 2025) ================
================ Training Loss (Sun Feb 23 23:10:05 2025) ================
================ Training Loss (Sun Feb 23 23:11:43 2025) ================
================ Training Loss (Sun Feb 23 23:12:41 2025) ================
================ Training Loss (Sun Feb 23 23:13:05 2025) ================
================ Training Loss (Sun Feb 23 23:13:59 2025) ================
================ Training Loss (Sun Feb 23 23:14:59 2025) ================
================ Training Loss (Mon Feb 24 21:53:50 2025) ================
================ Training Loss (Mon Feb 24 21:54:16 2025) ================
================ Training Loss (Mon Feb 24 21:54:50 2025) ================
================ Training Loss (Mon Feb 24 21:55:31 2025) ================
================ Training Loss (Mon Feb 24 21:56:10 2025) ================
================ Training Loss (Mon Feb 24 22:09:38 2025) ================
================ Training Loss (Mon Feb 24 22:10:16 2025) ================
================ Training Loss (Mon Feb 24 22:12:46 2025) ================
================ Training Loss (Mon Feb 24 22:13:04 2025) ================
================ Training Loss (Mon Feb 24 22:14:04 2025) ================

View File

@ -0,0 +1,88 @@
----------------- Options ---------------
adj_size_list: [2, 4, 6, 8, 12]
atten_layers: 1,3,5
batch_size: 1
beta1: 0.5
beta2: 0.999
checkpoints_dir: ./checkpoints
continue_train: False
crop_size: 256
dataroot: /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor [default: placeholder]
dataset_mode: unaligned_double [default: unaligned]
direction: AtoB
display_env: ROMA [default: main]
display_freq: 50
display_id: None
display_ncols: 4
display_port: 8097
display_server: http://localhost
display_winsize: 256
easy_label: experiment_name
epoch: latest
epoch_count: 1
eta_ratio: 0.1
evaluation_freq: 5000
flip_equivariance: False
gan_mode: lsgan
gpu_ids: 0
init_gain: 0.02
init_type: xavier
input_nc: 3
isTrain: True [default: None]
lambda_D_ViT: 1.0
lambda_GAN: 8.0 [default: 1.0]
lambda_NCE: 8.0 [default: 1.0]
lambda_SB: 0.1
lambda_ctn: 1.0
lambda_global: 1.0
lambda_inc: 1.0
lmda_1: 0.1
load_size: 286
lr: 1e-05 [default: 0.0002]
lr_decay_iters: 50
lr_policy: linear
max_dataset_size: inf
model: roma_unsb [default: cut]
n_epochs: 100
n_epochs_decay: 100
n_layers_D: 3
n_mlp: 3
name: ROMA_UNSB_001 [default: experiment_name]
nce_T: 0.07
nce_idt: False [default: True]
nce_includes_all_negatives_from_minibatch: False
nce_layers: 0,4,8,12,16
ndf: 64
netD: basic_cond
netF: mlp_sample
netF_nc: 256
netG: resnet_9blocks_cond
ngf: 64
no_antialias: False
no_antialias_up: False
no_dropout: True
no_flip: True [default: False]
no_html: False
normD: instance
normG: instance
num_patches: 256
num_threads: 4
num_timesteps: 10 [default: 5]
output_nc: 3
phase: train
pool_size: 0
preprocess: resize_and_crop
pretrained_name: None
print_freq: 100
random_scale_max: 3.0
save_by_iter: False
save_epoch_freq: 5
save_latest_freq: 5000
serial_batches: False
stylegan2_G_num_downsampling: 1
suffix:
tau: 0.01
update_html_freq: 1000
use_idt: False
verbose: False
----------------- End -------------------

View File

@ -60,15 +60,11 @@ def compute_ctn_loss(G, x, F_content): #公式10
loss = F.mse_loss(warped_fake, y_fake_warped) loss = F.mse_loss(warped_fake, y_fake_warped)
return loss return loss
class ContentAwareOptimization(nn.Module): class ContentAwareOptimization(nn.Module):
def __init__(self, lambda_inc=2.0, eta_ratio=0.4): def __init__(self, lambda_inc=2.0, eta_ratio=0.4):
super().__init__() super().__init__()
self.lambda_inc = lambda_inc # 权重增强系数 self.lambda_inc = lambda_inc # 权重增强系数
self.eta_ratio = eta_ratio # 选择内容区域的比例 self.eta_ratio = eta_ratio # 选择内容区域的比例
# 改为类成员变量,确保钩子函数可访问
self.gradients_real = []
self.gradients_fake = []
def compute_cosine_similarity(self, gradients): def compute_cosine_similarity(self, gradients):
""" """
@ -82,65 +78,138 @@ class ContentAwareOptimization(nn.Module):
# 计算余弦相似度 # 计算余弦相似度
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N] cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
return cosine_sim return cosine_sim
def generate_weight_map(self, gradients_real, gradients_fake): def generate_weight_map(self, gradients_fake, feature_shape):
""" """
生成内容感知权重图 生成内容感知权重图修正空间维度
Args: Args:
gradients_real: [B, N, D] 真实图像判别器梯度 gradients_real: [B, N, D] 真实图像判别器梯度
gradients_fake: [B, N, D] 生成图像判别器梯度 gradients_fake: [B, N, D] 生成图像判别器梯度
feature_shape: tuple [H, W] 判别器输出的特征图尺寸
Returns: Returns:
weight_real: [B, N] 真实图像权重图 weight_real: [B, 1, H, W] 真实图像权重图
weight_fake: [B, N] 生成图像权重图 weight_fake: [B, 1, H, W] 生成图像权重图
""" """
# 计算真实图像块的余弦相似度 H, W = feature_shape
cosine_real = self.compute_cosine_similarity(gradients_real) # [B, N] 公式5 N = H * W
# 计算生成图像块的余弦相似度
cosine_fake = self.compute_cosine_similarity(gradients_fake) # [B, N]
# 选择内容丰富的区域余弦相似度最低的eta_ratio比例 # 计算余弦相似度(与原代码相同)
k = int(self.eta_ratio * cosine_real.shape[1]) cosine_fake = self.compute_cosine_similarity(gradients_fake)
# 对真实图像生成权重图 # 生成权重图(与原代码相同)
_, real_indices = torch.topk(-cosine_real, k, dim=1) # 选择最不相似的区域 k = int(self.eta_ratio * cosine_fake.shape[1])
weight_real = torch.ones_like(cosine_real)
for b in range(cosine_real.shape[0]):
weight_real[b, real_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_real[b, real_indices[b]])) #公式6
# 对生成图像生成权重图(同理)
_, fake_indices = torch.topk(-cosine_fake, k, dim=1) _, fake_indices = torch.topk(-cosine_fake, k, dim=1)
weight_fake = torch.ones_like(cosine_fake) weight_fake = torch.ones_like(cosine_fake)
for b in range(cosine_fake.shape[0]): for b in range(cosine_fake.shape[0]):
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]])) weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
# 重建空间维度 --------------------------------------------------
# 将权重从[B, N]转换为[B, H, W]
#print(f"Shape of weight_fake before view: {weight_fake.shape}")
#print(f"Shape of cosine_fake: {cosine_fake.shape}")
#print(f"H: {H}, W: {W}, N: {N}")
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # [B,1,H,W]
return weight_real, weight_fake return weight_fake
def compute_cosine_similarity_image(self, gradients):
"""
计算每个空间位置梯度与平均梯度的余弦相似度 (图像版本)
Args:
gradients: [B, C, H, W] 判别器输出的梯度
Returns:
cosine_sim: [B, H, W] 每个空间位置的余弦相似度
"""
# 将空间维度展平,以便计算所有空间位置的平均梯度
B, C, H, W = gradients.shape
gradients_reshaped = gradients.view(B, C, H * W) # [B, C, N] where N = H*W
gradients_transposed = gradients_reshaped.transpose(1, 2) # [B, N, C] 将C放到最后一维方便计算空间位置的平均梯度
mean_grad = torch.mean(gradients_transposed, dim=1, keepdim=True) # [B, 1, C] 在空间位置维度上求平均,得到平均梯度 [B, 1, C]
# mean_grad 现在是所有空间位置的平均梯度,形状为 [B, 1, C]
# 为了计算余弦相似度,我们需要将 mean_grad 扩展到与 gradients_transposed 相同的空间维度
mean_grad_expanded = mean_grad.expand(-1, H * W, -1) # [B, N, C]
# 计算余弦相似度dim=2 表示在特征维度 (C) 上计算
cosine_sim = F.cosine_similarity(gradients_transposed, mean_grad_expanded, dim=2) # [B, N]
# 将 cosine_sim 重新reshape回 [B, H, W]
cosine_sim = cosine_sim.view(B, H, W)
return cosine_sim
def generate_weight_map_image(self, gradients_fake, feature_shape):
"""
生成内容感知权重图修正空间维度 - 图像版本
Args:
gradients_fake: [B, C, H, W] 生成图像判别器梯度
feature_shape: tuple [H, W] 判别器输出的特征图尺寸
Returns:
weight_fake: [B, 1, H, W] 生成图像权重图
"""
H, W = feature_shape
# 计算余弦相似度(图像版本)
cosine_fake = self.compute_cosine_similarity_image(gradients_fake) # [B, H, W]
# 生成权重图与原代码相同但现在cosine_fake是[B, H, W]
k = int(self.eta_ratio * H * W) # k 仍然是基于总的空间位置数量计算
_, fake_indices = torch.topk(-cosine_fake.view(cosine_fake.shape[0], -1), k, dim=1) # 将 cosine_fake 展平为 [B, N] 以使用 topk
weight_fake = torch.ones_like(cosine_fake).view(cosine_fake.shape[0], -1) # 初始化权重图,并展平为 [B, N]
for b in range(cosine_fake.shape[0]):
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake.view(cosine_fake.shape[0], -1)[b, fake_indices[b]]))
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # 重新 reshape 为 [B, H, W],并添加通道维度变为 [B, 1, H, W]
return weight_fake
def forward(self, D_real, D_fake, real_scores, fake_scores): def forward(self, D_real, D_fake, real_scores, fake_scores):
# 清空梯度缓存 """
self.gradients_real.clear() 计算内容感知对抗损失
self.gradients_fake.clear() Args:
# 注册钩子 D_real: 判别器对真实图像的特征输出 [B, C, H, W]
hook_real = lambda grad: self.gradients_real.append(grad.detach()) D_fake: 判别器对生成图像的特征输出 [B, C, H, W]
hook_fake = lambda grad: self.gradients_fake.append(grad.detach()) real_scores: 真实图像的判别器预测 [B, N] (N=H*W)
fake_scores: 生成图像的判别器预测 [B, N]
Returns:
loss_co_adv: 内容感知对抗损失
"""
B, C, H, W = D_real.shape
N = H * W
shape_hw = [H, W]
# 注册钩子获取梯度
gradients_real = []
gradients_fake = []
def hook_real(grad):
gradients_real.append(grad.detach().view(B, N, -1))
def hook_fake(grad):
gradients_fake.append(grad.detach().view(B, N, -1))
D_real.register_hook(hook_real) D_real.register_hook(hook_real)
D_fake.register_hook(hook_fake) D_fake.register_hook(hook_fake)
# 触发梯度计算 # 计算原始对抗损失以触发梯度计算
(real_scores.mean() + fake_scores.mean()).backward(retain_graph=True) loss_real = torch.mean(torch.log(real_scores + 1e-8))
loss_fake = torch.mean(torch.log(1 - fake_scores + 1e-8))
# 添加与 D_real、D_fake 相关的 dummy 项,确保梯度传递
loss_dummy = 1e-8 * (D_real.sum() + D_fake.sum())
total_loss = loss_real + loss_fake + loss_dummy
total_loss.backward(retain_graph=True)
# 获取梯度并调整维度 # 获取梯度数据
grad_real = self.gradients_real[0] # [B, N, D] gradients_real = gradients_real[1] # [B, N, D]
grad_fake = self.gradients_fake[0] gradients_fake = gradients_fake[1] # [B, N, D]
# 生成权重图 # 生成权重图
weight_real, weight_fake = self.generate_weight_map(grad_real, grad_fake) self.weight_real, self.weight_fake = self.generate_weight_map(gradients_fake, shape_hw )
# 计算加权损失 # 应用权重到对抗损失
loss_co_real = (weight_real * real_scores).mean() loss_co_real = torch.mean(self.weight_real * torch.log(real_scores + 1e-8))
loss_co_fake = (weight_fake * fake_scores).mean() loss_co_fake = torch.mean(self.weight_fake * torch.log(1 - fake_scores + 1e-8))
return (loss_co_real + loss_co_fake), weight_real, weight_fake # 计算并返回最终内容感知对抗损失
loss_co_adv = -(loss_co_real + loss_co_fake)
return loss_co_adv
class ContentAwareTemporalNorm(nn.Module): class ContentAwareTemporalNorm(nn.Module):
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0): def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
@ -148,33 +217,6 @@ class ContentAwareTemporalNorm(nn.Module):
self.gamma_stride = gamma_stride # 控制整体运动幅度 self.gamma_stride = gamma_stride # 控制整体运动幅度
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层 self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
"""
将patch级别的权重图上采样到目标分辨率
Args:
weight_patch: [B, 1, 24, 24] 来自ViT的patch权重图
target_size: 目标分辨率 (H, W)
Returns:
weight_full: [B, 1, 256, 256] 上采样后的全分辨率权重图
"""
# 使用双线性插值上采样
B = weight_patch.shape[0]
weight_patch = weight_patch.view(B, 1, 24, 24)
weight_full = F.interpolate(
weight_patch,
size=target_size,
mode='bilinear',
align_corners=False
)
# 对每个16x16的patch内部保持权重一致可选
# 通过平均池化再扩展,消除插值引入的渐变
weight_full = F.avg_pool2d(weight_full, kernel_size=16, stride=16)
weight_full = F.interpolate(weight_full, scale_factor=16, mode='nearest')
return weight_full
def forward(self, weight_map): def forward(self, weight_map):
""" """
生成内容感知光流 生成内容感知光流
@ -183,16 +225,15 @@ class ContentAwareTemporalNorm(nn.Module):
Returns: Returns:
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移) F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
""" """
# 上采样权重图到全分辨率 print(weight_map.shape)
weight_full = self.upsample_weight_map(weight_map) # [B,1,384,384] B, _, H, W = weight_map.shape
# 1. 归一化权重图 # 1. 归一化权重图
# 保持区域相对强度,同时限制数值范围 # 保持区域相对强度,同时限制数值范围
weight_norm = F.normalize(weight_full, p=1, dim=(2,3)) # L1归一化 [B,1,H,W] weight_norm = F.normalize(weight_map, p=1, dim=(2,3)) # L1归一化 [B,1,H,W]
# 2. 生成高斯噪声 # 2. 生成高斯噪声(与光流场同尺寸)
B, _, H, W = weight_norm.shape z = torch.randn(B, 2, H, W, device=weight_map.device) # [B,2,H,W]
z = torch.randn(B, 2, H, W, device=weight_norm.device) # [B,2,H,W]
# 3. 合成基础光流 # 3. 合成基础光流
# 将权重图扩展为2通道(x/y方向共享权重) # 将权重图扩展为2通道(x/y方向共享权重)
@ -215,34 +256,44 @@ class RomaUnsbModel(BaseModel):
"""配置 CTNx 模型的特定选项""" """配置 CTNx 模型的特定选项"""
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))') parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
parser.add_argument('--lambda_SB', type=float, default=0.1, help='weight for SB loss') parser.add_argument('--lambda_SB', type=float, default=0.1, help='weight for SB loss')
parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm') parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm')
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator') parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency') parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))') parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
parser.add_argument('--nce_includes_all_negatives_from_minibatch', parser.add_argument('--nce_includes_all_negatives_from_minibatch',
type=util.str2bool, nargs='?', const=True, default=False, type=util.str2bool, nargs='?', const=True, default=False,
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.') help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map') parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
parser.add_argument('--netF_nc', type=int, default=256)
parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss')
parser.add_argument('--lmda_1', type=float, default=0.1)
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
parser.add_argument('--flip_equivariance', parser.add_argument('--flip_equivariance',
type=util.str2bool, nargs='?', const=True, default=False, type=util.str2bool, nargs='?', const=True, default=False,
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT") help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT")
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions') parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
parser.add_argument('--eta_ratio', type=float, default=0.1, help='ratio of content-rich regions')
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers') parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter') parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter')
parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer') parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer')
parser.add_argument('--adj_size_list', type=list, default=[2, 4, 6, 8, 12], help='different scales of perception field')
parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers') parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers')
parser.set_defaults(pool_size=0) # no image pooling
opt, _ = parser.parse_known_args() opt, _ = parser.parse_known_args()
# 直接设置为 sb 模式
parser.set_defaults(nce_idt=True, lambda_NCE=1.0)
return parser return parser
@ -251,8 +302,9 @@ class RomaUnsbModel(BaseModel):
BaseModel.__init__(self, opt) BaseModel.__init__(self, opt)
# 指定需要打印的训练损失 # 指定需要打印的训练损失
self.loss_names = ['G_GAN', 'D_real_ViT', 'D_fake_ViT', 'G', 'SB', 'global', 'ctn',] self.loss_names = ['G_GAN_1', 'D_real_1', 'D_fake_1', 'G_1', 'NCE_1', 'SB_1',
self.visual_names = ['real_A0', 'real_A_noisy', 'fake_B0', 'real_B0'] 'G_2']
self.visual_names = ['real_A', 'real_A_noisy', 'fake_B', 'real_B']
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')] self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
if self.opt.phase == 'test': if self.opt.phase == 'test':
@ -268,10 +320,12 @@ class RomaUnsbModel(BaseModel):
if self.isTrain: if self.isTrain:
self.model_names = ['G', 'D_ViT', 'E'] self.model_names = ['G', 'D_ViT', 'E']
else: else:
self.model_names = ['G'] self.model_names = ['G']
print(f'input_nc = {self.opt.input_nc}')
# 创建网络 # 创建网络
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt) self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
@ -289,6 +343,9 @@ class RomaUnsbModel(BaseModel):
# 定义损失函数 # 定义损失函数
self.criterionL1 = torch.nn.L1Loss().to(self.device) self.criterionL1 = torch.nn.L1Loss().to(self.device)
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionNCE = []
for nce_layer in self.nce_layers:
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
self.criterionIdt = torch.nn.L1Loss().to(self.device) self.criterionIdt = torch.nn.L1Loss().to(self.device)
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizer_D = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) self.optimizer_D = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
@ -305,6 +362,19 @@ class RomaUnsbModel(BaseModel):
initialized at the first feedforward pass with some input images. initialized at the first feedforward pass with some input images.
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call. Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
""" """
#bs_per_gpu = data["A"].size(0) // max(len(self.opt.gpu_ids), 1)
#self.set_input(data)
#self.real_A = self.real_A[:bs_per_gpu]
#self.real_B = self.real_B[:bs_per_gpu]
#self.forward() # compute fake images: G(A)
#if self.opt.isTrain:
#
# self.compute_G_loss().backward()
# self.compute_D_loss().backward()
# self.compute_E_loss().backward()
# if self.opt.lambda_NCE > 0.0:
# self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2))
# self.optimizers.append(self.optimizer_F)
pass pass
def optimize_parameters(self): def optimize_parameters(self):
@ -353,7 +423,38 @@ class RomaUnsbModel(BaseModel):
self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device) self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths'] self.image_paths = input['A_paths' if AtoB else 'B_paths']
def tokens_concat(self, origin_tokens, adjacent_size):
adj_size = adjacent_size
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
S = int(math.sqrt(token_num))
if S * S != token_num:
print('Error! Not a square!')
token_map = origin_tokens.clone().reshape(B,S,S,C)
cut_patch_list = []
for i in range(0, S, adj_size):
for j in range(0, S, adj_size):
i_left = i
i_right = i + adj_size + 1 if i + adj_size <= S else S + 1
j_left = j
j_right = j + adj_size if j + adj_size <= S else S + 1
cut_patch = token_map[:, i_left:i_right, j_left: j_right, :]
cut_patch= cut_patch.reshape(B,-1,C)
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
cut_patch_list.append(cut_patch)
result = torch.cat(cut_patch_list,dim=1)
return result
def cat_results(self, origin_tokens, adj_size_list):
res_list = [origin_tokens]
for ad_s in adj_size_list:
cat_result = self.tokens_concat(origin_tokens, ad_s)
res_list.append(cat_result)
result = torch.cat(res_list, dim=1)
return result
def forward(self): def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" """Run forward pass; called by both functions <optimize_parameters> and <test>."""
@ -402,8 +503,8 @@ class RomaUnsbModel(BaseModel):
# ============ 第三步:拼接输入并执行网络推理 ============= # ============ 第三步:拼接输入并执行网络推理 =============
bs = self.real_A0.size(0) bs = self.real_A0.size(0)
self.z_in = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A0.device) z_in = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A0.device)
self.z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A1.device) z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A1.device)
# 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB # 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB
self.real = self.real_A0 self.real = self.real_A0
self.realt = self.real_A_noisy self.realt = self.real_A_noisy
@ -414,8 +515,8 @@ class RomaUnsbModel(BaseModel):
self.real = torch.flip(self.real, [3]) self.real = torch.flip(self.real, [3])
self.realt = torch.flip(self.realt, [3]) self.realt = torch.flip(self.realt, [3])
self.fake_B0 = self.netG(self.real_A_noisy, self.time, self.z_in) self.fake_B0 = self.netG(self.real_A0, self.time, z_in)
self.fake_B1 = self.netG(self.real_A_noisy2, self.time, self.z_in2) self.fake_B1 = self.netG(self.real_A1, self.time, z_in2)
if self.opt.phase == 'train': if self.opt.phase == 'train':
real_A0 = self.real_A0 real_A0 = self.real_A0
@ -440,7 +541,32 @@ class RomaUnsbModel(BaseModel):
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True) self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
# [[1,576,768],[1,576,768],[1,576,768]] # [[1,576,768],[1,576,768],[1,576,768]]
# [3,576,768] # [3,576,768]
#self.mutil_real_A0_tokens = self.cat_results(self.mutil_real_A0_tokens[0], self.opt.adj_size_list)
#print(f'self.mutil_real_A0_tokens[0]:{self.mutil_real_A0_tokens[0].shape}')
shape_hw = list(self.real_A0_resize.shape[2:4])
# 生成图像的梯度
fake_gradient = torch.autograd.grad(self.mutil_fake_B0_tokens[0].sum(), self.mutil_fake_B0_tokens, create_graph=True)[0]
# 梯度图
self.weight_fake = self.cao.generate_weight_map_image(fake_gradient, shape_hw)
# 生成图像的CTN光流图
self.f_content = self.ctn(self.weight_fake)
# 变换后的图片
self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
# 经过第二次生成器
self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, z_in)
# warped_fake_B0_2=self.warped_fake_B0_2
# warped_fake_B0=self.warped_fake_B0
# self.warped_fake_B0_2_resize = self.resize(warped_fake_B0_2)
# self.warped_fake_B0_resize = self.resize(warped_fake_B0)
# self.mutil_warped_fake_B0_tokens = self.netPreViT(self.warped_fake_B0_resize, self.atten_layers, get_tokens=True)
# self.mutil_fake_B0_2_tokens = self.netPreViT(self.warped_fake_B0_2_resize, self.atten_layers, get_tokens=True)
def compute_D_loss(self): #判别器还是没有改 def compute_D_loss(self): #判别器还是没有改
@ -448,23 +574,30 @@ class RomaUnsbModel(BaseModel):
lambda_D_ViT = self.opt.lambda_D_ViT lambda_D_ViT = self.opt.lambda_D_ViT
fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach() fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach()
fake_B1_tokens = self.mutil_fake_B1_tokens[0].detach()
real_B0_tokens = self.mutil_real_B0_tokens[0] real_B0_tokens = self.mutil_real_B0_tokens[0]
real_B1_tokens = self.mutil_real_B1_tokens[0]
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens) pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
self.loss_D_fake_ViT = self.criterionGAN(pre_fake0_ViT, False) pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
self.loss_D_fake_ViT = (self.criterionGAN(pre_fake0_ViT, False).mean() + self.criterionGAN(pre_fake1_ViT, False).mean()) * 0.5 * lambda_D_ViT
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
pred_real1_ViT = self.netD_ViT(real_B1_tokens)
self.loss_D_real_ViT = (self.criterionGAN(pred_real0_ViT, True).mean() + self.criterionGAN(pred_real1_ViT, True).mean()) * 0.5 * lambda_D_ViT
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
self.loss_D_real_ViT = self.criterionGAN(pred_real0_ViT, True)
self.losscao, self.weight_real, self.weight_fake = self.cao(pred_real0_ViT, pre_fake0_ViT, self.loss_D_real_ViT, self.loss_D_fake_ViT)
self.loss_D_ViT = self.losscao* lambda_D_ViT
return self.loss_D_ViT return self.loss_D_ViT
def compute_E_loss(self): def compute_E_loss(self):
"""计算判别器 E 的损失""" """计算判别器 E 的损失"""
print(f'resl_A_noisy: {self.real_A_noisy.shape} \n fake_B0: {self.fake_B0.shape}')
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0.detach()], dim=1) XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0.detach()], dim=1)
XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1.detach()], dim=1) XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1.detach()], dim=1)
temp = torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0).mean() temp = torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0).mean()
@ -474,28 +607,12 @@ class RomaUnsbModel(BaseModel):
def compute_G_loss(self): def compute_G_loss(self):
"""计算生成器的 GAN 损失""" """计算生成器的 GAN 损失"""
if self.opt.lambda_ctn > 0.0:
# 生成图像的CTN光流图
self.f_content = self.ctn(self.weight_fake)
# 变换后的图片
self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
# 经过第二次生成器
self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, self.z_in)
warped_fake_B0_2=self.warped_fake_B0_2
warped_fake_B0=self.warped_fake_B0
# 计算L2损失
self.loss_ctn = F.mse_loss(warped_fake_B0_2, warped_fake_B0)
if self.opt.lambda_GAN > 0.0: if self.opt.lambda_GAN > 0.0:
pred_fake = self.netD_ViT(self.mutil_fake_B0_tokens[0]) pred_fake = self.netD_ViT(self.mutil_fake_B0_tokens[0])
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN
else: else:
self.loss_G_GAN = 0.0 self.loss_G_GAN = 0.0
self.loss_SB = 0 self.loss_SB = 0
if self.opt.lambda_SB > 0.0: if self.opt.lambda_SB > 0.0:
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0], dim=1) XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0], dim=1)
@ -504,20 +621,22 @@ class RomaUnsbModel(BaseModel):
bs = self.opt.batch_size bs = self.opt.batch_size
# eq.9 # eq.9
ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - self.netE(XtXt_1, self.time, XtXt_2).mean() ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0)
self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY
self.loss_SB += torch.mean((self.real_A_noisy - self.fake_B0) ** 2) self.loss_SB += self.opt.tau * torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
if self.opt.lambda_global > 0.0: if self.opt.lambda_global > 0.0:
self.loss_global = self.calculate_similarity(self.real_A0, self.fake_B0) + self.calculate_similarity(self.real_A1, self.fake_B1) loss_global = self.calculate_similarity(self.real_A0, self.fake_B0) + self.calculate_similarity(self.real_A1, self.fake_B1)
self.loss_global *= 0.5 loss_global *= 0.5
else: else:
self.loss_global = 0.0 loss_global = 0.0
self.loss_G = self.opt.lambda_GAN * self.loss_G_GAN + \ self.l2_loss = 0.0
self.opt.lambda_SB * self.loss_SB + \ if self.opt.lambda_l2 > 0.0:
self.opt.lambda_ctn * self.loss_ctn + \ wapped_fake_B = warp(self.fake_B0, self.f_content) # use updated self.f_content
self.loss_global * self.opt.lambda_global self.l2_loss = F.mse_loss(self.warped_fake_B0_2, wapped_fake_B) # complete the loss calculation
self.loss_G = self.loss_G_GAN + self.opt.lambda_SB * self.loss_SB + self.opt.lambda_ctn * self.l2_loss + loss_global * self.opt.lambda_global
return self.loss_G return self.loss_G
def calculate_attention_loss(self): def calculate_attention_loss(self):

View File

@ -31,7 +31,7 @@ class TrainOptions(BaseOptions):
parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
parser.add_argument('--pretrained_name', type=str, default=None, help='resume training from another checkpoint') parser.add_argument('--pretrained_name', type=str, default=None, help='resume training from another checkpoint')
# training parameters # training parameters
parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate') parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate')
parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero') parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero')

301
roma.py Normal file
View File

@ -0,0 +1,301 @@
import numpy as np
import torch
from .base_model import BaseModel
from . import networks
from .patchnce import PatchNCELoss
import util.util as util
import timm
import time
import torch.nn.functional as F
import sys
from functools import partial
import torch.nn as nn
import math
from torchvision.transforms import transforms as tfs
class ROMAModel(BaseModel):
@staticmethod
def modify_commandline_options(parser, is_train=True):
""" Configures options specific for CUT model
"""
parser.add_argument('--adj_size_list', type=list, default=[2, 4, 6, 8, 12], help='different scales of perception field')
parser.add_argument('--lambda_mlp', type=float, default=1.0, help='weight of lr for discriminator')
parser.add_argument('--lambda_motion', type=float, default=1.0, help='weight for Temporal Consistency')
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
parser.add_argument('--lambda_spatial', type=float, default=1.0, help='weight for Local Structural Consistency')
parser.add_argument('--atten_layers', type=str, default='1,3,5', help='compute Cross-Similarity on which layers')
parser.add_argument('--local_nums', type=int, default=256)
parser.add_argument('--which_D_layer', type=int, default=-1)
parser.add_argument('--side_length', type=int, default=7)
parser.set_defaults(pool_size=0)
opt, _ = parser.parse_known_args()
return parser
def __init__(self, opt):
BaseModel.__init__(self, opt)
self.loss_names = ['G_GAN_ViT', 'D_real_ViT', 'D_fake_ViT', 'global', 'spatial', 'motion']
self.visual_names = ['real_A0', 'real_A1', 'fake_B0', 'fake_B1', 'real_B0', 'real_B1']
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
if self.isTrain:
self.model_names = ['G', 'D_ViT']
else: # during test time, only load G
self.model_names = ['G']
# define networks (both generator and discriminator)
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
if self.isTrain:
self.netD_ViT = networks.MLPDiscriminator().to(self.device)
self.netPreViT = timm.create_model("vit_base_patch16_384",pretrained=True).to(self.device)
self.norm = F.softmax
self.resize = tfs.Resize(size=(384,384))
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionNCE = []
for atten_layer in self.atten_layers:
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
self.criterionL1 = torch.nn.L1Loss().to(self.device)
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
self.optimizer_D_ViT = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr * opt.lambda_mlp, betas=(opt.beta1, opt.beta2))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D_ViT)
def data_dependent_initialize(self, data):
"""
The feature network netF is defined in terms of the shape of the intermediate, extracted
features of the encoder portion of netG. Because of this, the weights of netF are
initialized at the first feedforward pass with some input images.
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
"""
pass
def optimize_parameters(self):
# forward
self.forward()
# update D
self.set_requires_grad(self.netD_ViT, True)
self.optimizer_D_ViT.zero_grad()
self.loss_D = self.compute_D_loss()
self.loss_D.backward()
self.optimizer_D_ViT.step()
# update G
self.set_requires_grad(self.netD_ViT, False)
self.optimizer_G.zero_grad()
self.loss_G = self.compute_G_loss()
self.loss_G.backward()
self.optimizer_G.step()
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): include the data itself and its metadata information.
The option 'direction' can be used to swap domain A and domain B.
"""
AtoB = self.opt.direction == 'AtoB'
self.real_A0 = input['A0' if AtoB else 'B0'].to(self.device)
self.real_A1 = input['A1' if AtoB else 'B1'].to(self.device)
self.real_B0 = input['B0' if AtoB else 'A0'].to(self.device)
self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device)
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self.fake_B0 = self.netG(self.real_A0)
self.fake_B1 = self.netG(self.real_A1)
if self.opt.isTrain:
real_A0 = self.real_A0
real_A1 = self.real_A1
real_B0 = self.real_B0
real_B1 = self.real_B1
fake_B0 = self.fake_B0
fake_B1 = self.fake_B1
self.real_A0_resize = self.resize(real_A0)
self.real_A1_resize = self.resize(real_A1)
real_B0 = self.resize(real_B0)
real_B1 = self.resize(real_B1)
self.fake_B0_resize = self.resize(fake_B0)
self.fake_B1_resize = self.resize(fake_B1)
self.mutil_real_A0_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True)
self.mutil_real_A1_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True)
self.mutil_real_B0_tokens = self.netPreViT(real_B0, self.atten_layers, get_tokens=True)
self.mutil_real_B1_tokens = self.netPreViT(real_B1, self.atten_layers, get_tokens=True)
self.mutil_fake_B0_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True)
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
def tokens_concat(self, origin_tokens, adjacent_size):
adj_size = adjacent_size
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
S = int(math.sqrt(token_num))
if S * S != token_num:
print('Error! Not a square!')
token_map = origin_tokens.clone().reshape(B,S,S,C)
cut_patch_list = []
for i in range(0, S, adj_size):
for j in range(0, S, adj_size):
i_left = i
i_right = i + adj_size + 1 if i + adj_size <= S else S + 1
j_left = j
j_right = j + adj_size if j + adj_size <= S else S + 1
cut_patch = token_map[:, i_left:i_right, j_left: j_right, :]
cut_patch= cut_patch.reshape(B,-1,C)
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
cut_patch_list.append(cut_patch)
result = torch.cat(cut_patch_list,dim=1)
return result
def cat_results(self, origin_tokens, adj_size_list):
res_list = [origin_tokens]
for ad_s in adj_size_list:
cat_result = self.tokens_concat(origin_tokens, ad_s)
res_list.append(cat_result)
result = torch.cat(res_list, dim=1)
return result
def compute_D_loss(self):
"""Calculate GAN loss for the discriminator"""
lambda_D_ViT = self.opt.lambda_D_ViT
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer].detach()
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer].detach()
real_B0_tokens = self.mutil_real_B0_tokens[self.opt.which_D_layer]
real_B1_tokens = self.mutil_real_B1_tokens[self.opt.which_D_layer]
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
real_B0_tokens = self.cat_results(real_B0_tokens, self.opt.adj_size_list)
real_B1_tokens = self.cat_results(real_B1_tokens, self.opt.adj_size_list)
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
self.loss_D_fake_ViT = (self.criterionGAN(pre_fake0_ViT, False).mean() + self.criterionGAN(pre_fake1_ViT, False).mean()) * 0.5 * lambda_D_ViT
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
pred_real1_ViT = self.netD_ViT(real_B1_tokens)
self.loss_D_real_ViT = (self.criterionGAN(pred_real0_ViT, True).mean() + self.criterionGAN(pred_real1_ViT, True).mean()) * 0.5 * lambda_D_ViT
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5
return self.loss_D_ViT
def compute_G_loss(self):
if self.opt.lambda_GAN > 0.0:
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer]
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer]
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
pred_fake0_ViT = self.netD_ViT(fake_B0_tokens)
pred_fake1_ViT = self.netD_ViT(fake_B1_tokens)
self.loss_G_GAN_ViT = (self.criterionGAN(pred_fake0_ViT, True) + self.criterionGAN(pred_fake1_ViT, True)) * 0.5 * self.opt.lambda_GAN
else:
self.loss_G_GAN_ViT = 0.0
if self.opt.lambda_global > 0.0 or self.opt.lambda_spatial > 0.0:
self.loss_global, self.loss_spatial = self.calculate_attention_loss()
else:
self.loss_global, self.loss_spatial = 0.0, 0.0
if self.opt.lambda_motion > 0.0:
self.loss_motion = 0.0
for real_A0_tokens, real_A1_tokens, fake_B0_tokens, fake_B1_tokens in zip(self.mutil_real_A0_tokens, self.mutil_real_A1_tokens, self.mutil_fake_B0_tokens, self.mutil_fake_B1_tokens):
A0_B1 = real_A0_tokens.bmm(fake_B1_tokens.permute(0,2,1))
B0_A1 = fake_B0_tokens.bmm(real_A1_tokens.permute(0,2,1))
cos_dis_global = F.cosine_similarity(A0_B1, B0_A1, dim=-1)
self.loss_motion += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
else:
self.loss_motion = 0.0
self.loss_G = self.loss_G_GAN_ViT + self.loss_global + self.loss_spatial + self.loss_motion
return self.loss_G
def calculate_attention_loss(self):
n_layers = len(self.atten_layers)
mutil_real_A0_tokens = self.mutil_real_A0_tokens
mutil_real_A1_tokens = self.mutil_real_A1_tokens
mutil_fake_B0_tokens = self.mutil_fake_B0_tokens
mutil_fake_B1_tokens = self.mutil_fake_B1_tokens
if self.opt.lambda_global > 0.0:
loss_global = self.calculate_similarity(mutil_real_A0_tokens, mutil_fake_B0_tokens) + self.calculate_similarity(mutil_real_A1_tokens, mutil_fake_B1_tokens)
loss_global *= 0.5
else:
loss_global = 0.0
if self.opt.lambda_spatial > 0.0:
loss_spatial = 0.0
local_nums = self.opt.local_nums
tokens_cnt = 576
local_id = np.random.permutation(tokens_cnt)
local_id = local_id[:int(min(local_nums, tokens_cnt))]
mutil_real_A0_local_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
mutil_real_A1_local_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
mutil_fake_B0_local_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
mutil_fake_B1_local_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
loss_spatial = self.calculate_similarity(mutil_real_A0_local_tokens, mutil_fake_B0_local_tokens) + self.calculate_similarity(mutil_real_A1_local_tokens, mutil_fake_B1_local_tokens)
loss_spatial *= 0.5
else:
loss_spatial = 0.0
return loss_global * self.opt.lambda_global, loss_spatial * self.opt.lambda_spatial
def calculate_similarity(self, mutil_src_tokens, mutil_tgt_tokens):
loss = 0.0
n_layers = len(self.atten_layers)
for src_tokens, tgt_tokens in zip(mutil_src_tokens, mutil_tgt_tokens):
src_tgt = src_tokens.bmm(tgt_tokens.permute(0,2,1))
tgt_src = tgt_tokens.bmm(src_tokens.permute(0,2,1))
cos_dis_global = F.cosine_similarity(src_tgt, tgt_src, dim=-1)
loss += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
loss = loss / n_layers
return loss

View File

@ -7,29 +7,27 @@
python train.py \ python train.py \
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \ --dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
--name UNIV_5 \ --name ROMA_UNSB_001 \
--dataset_mode unaligned_double \ --dataset_mode unaligned_double \
--display_env UNIV \ --no_flip \
--display_env ROMA \
--model roma_unsb \ --model roma_unsb \
--lambda_SB 1.0 \ --lambda_GAN 8.0 \
--lambda_ctn 10 \ --lambda_NCE 8.0 \
--lambda_SB 0.1 \
--lambda_ctn 1.0 \
--lambda_inc 1.0 \ --lambda_inc 1.0 \
--lambda_global 6.0 \ --lr 0.00001 \
--gamma_stride 20 \ --gpu_id 0 \
--lr 0.000002 \
--gpu_id 1 \
--nce_idt False \ --nce_idt False \
--nce_layers 0,4,8,12,16 \
--netF mlp_sample \ --netF mlp_sample \
--eta_ratio 0.4 \ --netF_nc 256 \
--nce_T 0.07 \
--lmda_1 0.1 \
--num_patches 256 \
--flip_equivariance False \
--eta_ratio 0.1 \
--tau 0.01 \ --tau 0.01 \
--num_timesteps 5 \ --num_timesteps 10 \
--input_nc 3 \ --input_nc 3
--n_epochs 400 \
--n_epochs_decay 200 \
# exp1 num_timesteps=4 (已停)
# exp2 num_timesteps=5 (已停)
# exp3 --num_timesteps 5,--lambda_inc 8 --gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002 (已停)
# exp4 --num_timesteps 5,--lambda_inc 8 --gamma_stride 20,--lambda_global 6.0,--lambda_ctn 10, --lr 0.000002, ET_XY=self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time_idx, XtXt_2).reshape(-1), dim=0) ,并把GAN,CTN loss考虑到了A1和B1 (已停)
# exp5 基于 exp4 ,修改了 self.loss_global = self.calculate_similarity(self.mutil_real_A0_tokens, self.mutil_fake_B0_tokens) + self.calculate_similarity(mutil_real_A1_tokens, self.mutil_fake_B1_tokens) ,gpu_id 1 (已停)
# 上面几个实验效果都不好实验结果都已经删除了开的新的train_sbiv 对代码进行了调整,效果变得更好了。

View File

@ -1,33 +0,0 @@
#!/bin/sh
# Train for video mode
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned_double --no_flip --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --lambda_motion 1.0 --atten_layers 1,3,5 --lr 0.00001
# Train for image mode
#CUDA_VISIBLE_DEVICES=0 python train.py --dataroot /path --name ROMA_name --dataset_mode unaligned --local_nums 64 --display_env ROMA_env --model roma --side_length 7 --lambda_spatial 5.0 --lambda_global 5.0 --atten_layers 1,3,5 --lr 0.00001
python train.py \
--dataroot /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor \
--name SBIV_4 \
--dataset_mode unaligned_double \
--display_env SBIV \
--model roma_unsb \
--lambda_SB 1.0 \
--lambda_ctn 10 \
--lambda_inc 1.0 \
--lambda_global 6.0 \
--gamma_stride 20 \
--lr 0.000002 \
--gpu_id 2 \
--nce_idt False \
--netF mlp_sample \
--eta_ratio 0.4 \
--tau 0.01 \
--num_timesteps 3 \
--input_nc 3 \
--n_epochs 400 \
--n_epochs_decay 200 \
# exp6 num_timesteps=4 gpu_id 0基于 exp5 ,exp1 已停) (已停)
# exp7 num_timesteps=3 gpu_id 0 基于 exp6 (将停)
# # exp8 num_timesteps=4 gpu_id 1 ,修改了训练判别器的loss以及ctnloss基于exp6
# # exp9 num_timesteps=3 gpu_id 2 ,(基于 exp8

View File

@ -44,7 +44,6 @@ if __name__ == '__main__':
model.setup(opt) # regular setup: load and print networks; create schedulers model.setup(opt) # regular setup: load and print networks; create schedulers
model.parallelize() model.parallelize()
model.set_input(data) # unpack data from dataset and apply preprocessing model.set_input(data) # unpack data from dataset and apply preprocessing
#print('Call opt paras')
model.optimize_parameters() # calculate loss functions, get gradients, update network weights model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if len(opt.gpu_ids) > 0: if len(opt.gpu_ids) > 0:
torch.cuda.synchronize() torch.cuda.synchronize()