Compare commits
16 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
77468f16f9 | ||
|
|
c173e29ea6 | ||
|
|
537cb050a5 | ||
|
|
f98c285950 | ||
|
|
e0dc08030c | ||
|
|
997fdd3770 | ||
|
|
14ba81514f | ||
|
|
c6cb68e700 | ||
|
|
76fcec26e8 | ||
|
|
2a0a56ac26 | ||
|
|
7a6e856b4b | ||
|
|
e8e483fbf8 | ||
|
|
3c4d53377c | ||
|
|
6a2761be99 | ||
|
|
c2e6cfe0b1 | ||
|
|
4af0d7463d |
5
.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
checkpoints/
|
||||
*.log
|
||||
*.pth
|
||||
*.ckpt
|
||||
__pycache__/
|
||||
@ -1,80 +0,0 @@
|
||||
================ Training Loss (Sun Feb 23 15:46:44 2025) ================
|
||||
================ Training Loss (Sun Feb 23 15:52:29 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:00:07 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:02:40 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:05:19 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:06:44 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:09:38 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:44:56 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:49:46 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:51:03 2025) ================
|
||||
================ Training Loss (Sun Feb 23 16:51:23 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:04:02 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:04:39 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:05:17 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:06:40 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:11:48 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:13:31 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:14:11 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:14:29 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:16:27 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:16:44 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:20:39 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:21:44 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:35:27 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:39:21 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:40:15 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:41:15 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:47:46 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:48:36 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:50:20 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:51:50 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:58:45 2025) ================
|
||||
================ Training Loss (Sun Feb 23 18:59:52 2025) ================
|
||||
================ Training Loss (Sun Feb 23 19:03:05 2025) ================
|
||||
================ Training Loss (Sun Feb 23 19:03:57 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:11:47 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:17:10 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:20:14 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:29:03 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:34:57 2025) ================
|
||||
================ Training Loss (Sun Feb 23 21:35:26 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:28:43 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:29:04 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:29:52 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:30:40 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:33:48 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:39:16 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:39:48 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:41:34 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:42:01 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:44:17 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:45:53 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:46:48 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:47:42 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:49:44 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:50:29 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:51:47 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:55:56 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:56:19 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:57:58 2025) ================
|
||||
================ Training Loss (Sun Feb 23 22:59:09 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:02:36 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:03:56 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:09:21 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:10:05 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:11:43 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:12:41 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:13:05 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:13:59 2025) ================
|
||||
================ Training Loss (Sun Feb 23 23:14:59 2025) ================
|
||||
================ Training Loss (Mon Feb 24 21:53:50 2025) ================
|
||||
================ Training Loss (Mon Feb 24 21:54:16 2025) ================
|
||||
================ Training Loss (Mon Feb 24 21:54:50 2025) ================
|
||||
================ Training Loss (Mon Feb 24 21:55:31 2025) ================
|
||||
================ Training Loss (Mon Feb 24 21:56:10 2025) ================
|
||||
================ Training Loss (Mon Feb 24 22:09:38 2025) ================
|
||||
================ Training Loss (Mon Feb 24 22:10:16 2025) ================
|
||||
================ Training Loss (Mon Feb 24 22:12:46 2025) ================
|
||||
================ Training Loss (Mon Feb 24 22:13:04 2025) ================
|
||||
================ Training Loss (Mon Feb 24 22:14:04 2025) ================
|
||||
@ -1,88 +0,0 @@
|
||||
----------------- Options ---------------
|
||||
adj_size_list: [2, 4, 6, 8, 12]
|
||||
atten_layers: 1,3,5
|
||||
batch_size: 1
|
||||
beta1: 0.5
|
||||
beta2: 0.999
|
||||
checkpoints_dir: ./checkpoints
|
||||
continue_train: False
|
||||
crop_size: 256
|
||||
dataroot: /home/openxs/kunyu/datasets/InfraredCity-Lite/Double/Moitor [default: placeholder]
|
||||
dataset_mode: unaligned_double [default: unaligned]
|
||||
direction: AtoB
|
||||
display_env: ROMA [default: main]
|
||||
display_freq: 50
|
||||
display_id: None
|
||||
display_ncols: 4
|
||||
display_port: 8097
|
||||
display_server: http://localhost
|
||||
display_winsize: 256
|
||||
easy_label: experiment_name
|
||||
epoch: latest
|
||||
epoch_count: 1
|
||||
eta_ratio: 0.1
|
||||
evaluation_freq: 5000
|
||||
flip_equivariance: False
|
||||
gan_mode: lsgan
|
||||
gpu_ids: 0
|
||||
init_gain: 0.02
|
||||
init_type: xavier
|
||||
input_nc: 3
|
||||
isTrain: True [default: None]
|
||||
lambda_D_ViT: 1.0
|
||||
lambda_GAN: 8.0 [default: 1.0]
|
||||
lambda_NCE: 8.0 [default: 1.0]
|
||||
lambda_SB: 0.1
|
||||
lambda_ctn: 1.0
|
||||
lambda_global: 1.0
|
||||
lambda_inc: 1.0
|
||||
lmda_1: 0.1
|
||||
load_size: 286
|
||||
lr: 1e-05 [default: 0.0002]
|
||||
lr_decay_iters: 50
|
||||
lr_policy: linear
|
||||
max_dataset_size: inf
|
||||
model: roma_unsb [default: cut]
|
||||
n_epochs: 100
|
||||
n_epochs_decay: 100
|
||||
n_layers_D: 3
|
||||
n_mlp: 3
|
||||
name: ROMA_UNSB_001 [default: experiment_name]
|
||||
nce_T: 0.07
|
||||
nce_idt: False [default: True]
|
||||
nce_includes_all_negatives_from_minibatch: False
|
||||
nce_layers: 0,4,8,12,16
|
||||
ndf: 64
|
||||
netD: basic_cond
|
||||
netF: mlp_sample
|
||||
netF_nc: 256
|
||||
netG: resnet_9blocks_cond
|
||||
ngf: 64
|
||||
no_antialias: False
|
||||
no_antialias_up: False
|
||||
no_dropout: True
|
||||
no_flip: True [default: False]
|
||||
no_html: False
|
||||
normD: instance
|
||||
normG: instance
|
||||
num_patches: 256
|
||||
num_threads: 4
|
||||
num_timesteps: 10 [default: 5]
|
||||
output_nc: 3
|
||||
phase: train
|
||||
pool_size: 0
|
||||
preprocess: resize_and_crop
|
||||
pretrained_name: None
|
||||
print_freq: 100
|
||||
random_scale_max: 3.0
|
||||
save_by_iter: False
|
||||
save_epoch_freq: 5
|
||||
save_latest_freq: 5000
|
||||
serial_batches: False
|
||||
stylegan2_G_num_downsampling: 1
|
||||
suffix:
|
||||
tau: 0.01
|
||||
update_html_freq: 1000
|
||||
use_idt: False
|
||||
verbose: False
|
||||
----------------- End -------------------
|
||||
@ -1411,7 +1411,6 @@ class MLPDiscriminator(nn.Module):
|
||||
self.activation = nn.GELU()
|
||||
self.linear2 = nn.Linear(hid_feat, out_feat)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.activation(x)
|
||||
@ -1419,7 +1418,6 @@ class MLPDiscriminator(nn.Module):
|
||||
x = self.linear2(x)
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class NLayerDiscriminator(nn.Module):
|
||||
"""Defines a PatchGAN discriminator"""
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@ import numpy as np
|
||||
import math
|
||||
import timm
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torchvision.transforms import GaussianBlur
|
||||
@ -12,6 +13,7 @@ import util.util as util
|
||||
|
||||
from torchvision.transforms import transforms as tfs
|
||||
|
||||
|
||||
def warp(image, flow): #warp操作
|
||||
"""
|
||||
基于光流的图像变形函数
|
||||
@ -36,180 +38,74 @@ def warp(image, flow): #warp操作
|
||||
# 双线性插值
|
||||
return F.grid_sample(image, new_grid, align_corners=True)
|
||||
|
||||
# 时序归一化损失计算
|
||||
def compute_ctn_loss(G, x, F_content): #公式10
|
||||
"""
|
||||
计算内容感知时序归一化损失
|
||||
Args:
|
||||
G: 生成器
|
||||
x: 输入红外图像 [B,C,H,W]
|
||||
F_content: 生成的光流场 [B,2,H,W]
|
||||
"""
|
||||
|
||||
# 生成可见光图像
|
||||
y_fake = G(x) # [B,3,H,W]
|
||||
|
||||
# 对生成结果应用光流变形
|
||||
warped_fake = warp(y_fake, F_content) # [B,3,H,W]
|
||||
|
||||
# 对输入应用相同光流后生成图像
|
||||
warped_x = warp(x, F_content) # [B,C,H,W]
|
||||
y_fake_warped = G(warped_x) # [B,3,H,W]
|
||||
|
||||
# 计算L2损失
|
||||
loss = F.mse_loss(warped_fake, y_fake_warped)
|
||||
return loss
|
||||
|
||||
class ContentAwareOptimization(nn.Module):
|
||||
def __init__(self, lambda_inc=2.0, eta_ratio=0.4):
|
||||
super().__init__()
|
||||
self.lambda_inc = lambda_inc # 权重增强系数
|
||||
self.eta_ratio = eta_ratio # 选择内容区域的比例
|
||||
self.lambda_inc = lambda_inc # 控制内容丰富区域的权重增量
|
||||
self.eta_ratio = eta_ratio # 选择内容丰富区域的比例
|
||||
self.criterionGAN = networks.GANLoss('lsgan').cuda() # 使用 LSGAN 损失
|
||||
|
||||
def compute_cosine_similarity(self, gradients):
|
||||
def compute_cosine_similarity(self, grad_patch, grad_mean):
|
||||
"""
|
||||
计算每个patch梯度与平均梯度的余弦相似度
|
||||
计算每个 token 梯度与整体平均梯度的余弦相似度
|
||||
Args:
|
||||
gradients: [B, N, D] 判别器输出的每个patch的梯度(N=w*h)
|
||||
grad_patch: [B, N, D],每个 token 的梯度(来自 scores)
|
||||
grad_mean: [B, D],整体平均梯度
|
||||
Returns:
|
||||
cosine_sim: [B, N] 每个patch的余弦相似度
|
||||
cosine: [B, N],余弦相似度 δ_i
|
||||
"""
|
||||
mean_grad = torch.mean(gradients, dim=1, keepdim=True) # [B, 1, D]
|
||||
# 计算余弦相似度
|
||||
cosine_sim = F.cosine_similarity(gradients, mean_grad, dim=2) # [B, N]
|
||||
return cosine_sim
|
||||
# 对每个 token 计算余弦相似度
|
||||
cosine = F.cosine_similarity(grad_patch, grad_mean.unsqueeze(1), dim=2) # [B, N]
|
||||
return cosine
|
||||
|
||||
def generate_weight_map(self, gradients_fake, feature_shape):
|
||||
def generate_weight_map(self, cosine):
|
||||
"""
|
||||
生成内容感知权重图(修正空间维度)
|
||||
根据余弦相似度生成权重图
|
||||
Args:
|
||||
gradients_real: [B, N, D] 真实图像判别器梯度
|
||||
gradients_fake: [B, N, D] 生成图像判别器梯度
|
||||
feature_shape: tuple [H, W] 判别器输出的特征图尺寸
|
||||
cosine: [B, N],余弦相似度 δ_i
|
||||
Returns:
|
||||
weight_real: [B, 1, H, W] 真实图像权重图
|
||||
weight_fake: [B, 1, H, W] 生成图像权重图
|
||||
weights: [B, N],权重图 w_i
|
||||
"""
|
||||
H, W = feature_shape
|
||||
N = H * W
|
||||
B, N = cosine.shape
|
||||
k = int(self.eta_ratio * N) # 选择 eta_ratio 比例的 token
|
||||
_, indices = torch.topk(-cosine, k, dim=1) # 选择偏离最大的 k 个 token
|
||||
weights = torch.ones_like(cosine)
|
||||
for b in range(B):
|
||||
selected_cosine = cosine[b, indices[b]]
|
||||
weights[b, indices[b]] = self.lambda_inc / (torch.exp(torch.abs(selected_cosine)) + 1e-6)
|
||||
return weights
|
||||
|
||||
# 计算余弦相似度(与原代码相同)
|
||||
cosine_fake = self.compute_cosine_similarity(gradients_fake)
|
||||
|
||||
# 生成权重图(与原代码相同)
|
||||
k = int(self.eta_ratio * cosine_fake.shape[1])
|
||||
_, fake_indices = torch.topk(-cosine_fake, k, dim=1)
|
||||
weight_fake = torch.ones_like(cosine_fake)
|
||||
|
||||
for b in range(cosine_fake.shape[0]):
|
||||
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake[b, fake_indices[b]]))
|
||||
|
||||
# 重建空间维度 --------------------------------------------------
|
||||
# 将权重从[B, N]转换为[B, H, W]
|
||||
#print(f"Shape of weight_fake before view: {weight_fake.shape}")
|
||||
#print(f"Shape of cosine_fake: {cosine_fake.shape}")
|
||||
#print(f"H: {H}, W: {W}, N: {N}")
|
||||
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # [B,1,H,W]
|
||||
|
||||
return weight_fake
|
||||
|
||||
def compute_cosine_similarity_image(self, gradients):
|
||||
def forward(self, scores, target):
|
||||
"""
|
||||
计算每个空间位置梯度与平均梯度的余弦相似度 (图像版本)
|
||||
前向传播,计算加权后的 GAN 损失
|
||||
Args:
|
||||
gradients: [B, C, H, W] 判别器输出的梯度
|
||||
scores: [B, N, D],判别器的预测得分
|
||||
target: 目标标签(True 或 False)
|
||||
Returns:
|
||||
cosine_sim: [B, H, W] 每个空间位置的余弦相似度
|
||||
weighted_loss: 加权后的 GAN 损失
|
||||
weight: 权重图 [B, N]
|
||||
"""
|
||||
# 将空间维度展平,以便计算所有空间位置的平均梯度
|
||||
B, C, H, W = gradients.shape
|
||||
gradients_reshaped = gradients.view(B, C, H * W) # [B, C, N] where N = H*W
|
||||
gradients_transposed = gradients_reshaped.transpose(1, 2) # [B, N, C] 将C放到最后一维,方便计算空间位置的平均梯度
|
||||
# 计算原始 GAN 损失(假设 criterionGAN 返回 [B, N] 的损失分布)
|
||||
loss = self.criterionGAN(scores, target)
|
||||
|
||||
mean_grad = torch.mean(gradients_transposed, dim=1, keepdim=True) # [B, 1, C] 在空间位置维度上求平均,得到平均梯度 [B, 1, C]
|
||||
# mean_grad 现在是所有空间位置的平均梯度,形状为 [B, 1, C]
|
||||
# 捕获 scores 的梯度,形状为 [B, N, D]
|
||||
grad_scores = torch.autograd.grad(loss, scores, retain_graph=True)[0]
|
||||
|
||||
# 为了计算余弦相似度,我们需要将 mean_grad 扩展到与 gradients_transposed 相同的空间维度
|
||||
mean_grad_expanded = mean_grad.expand(-1, H * W, -1) # [B, N, C]
|
||||
# 计算整体平均梯度(在 N 维度上求均值)
|
||||
grad_mean = torch.mean(grad_scores, dim=1) # [B, D]
|
||||
|
||||
# 计算余弦相似度,dim=2 表示在特征维度 (C) 上计算
|
||||
cosine_sim = F.cosine_similarity(gradients_transposed, mean_grad_expanded, dim=2) # [B, N]
|
||||
# 计算余弦相似度 δ_i
|
||||
cosine = self.compute_cosine_similarity(grad_scores, grad_mean) # [B, N]
|
||||
|
||||
# 将 cosine_sim 重新reshape回 [B, H, W]
|
||||
cosine_sim = cosine_sim.view(B, H, W)
|
||||
return cosine_sim
|
||||
# 生成权重图 w_i
|
||||
weight = self.generate_weight_map(cosine) # [B, N]
|
||||
|
||||
def generate_weight_map_image(self, gradients_fake, feature_shape):
|
||||
"""
|
||||
生成内容感知权重图(修正空间维度 - 图像版本)
|
||||
Args:
|
||||
gradients_fake: [B, C, H, W] 生成图像判别器梯度
|
||||
feature_shape: tuple [H, W] 判别器输出的特征图尺寸
|
||||
Returns:
|
||||
weight_fake: [B, 1, H, W] 生成图像权重图
|
||||
"""
|
||||
H, W = feature_shape
|
||||
# 计算余弦相似度(图像版本)
|
||||
cosine_fake = self.compute_cosine_similarity_image(gradients_fake) # [B, H, W]
|
||||
# 生成权重图(与原代码相同,但现在cosine_fake是[B, H, W])
|
||||
k = int(self.eta_ratio * H * W) # k 仍然是基于总的空间位置数量计算
|
||||
_, fake_indices = torch.topk(-cosine_fake.view(cosine_fake.shape[0], -1), k, dim=1) # 将 cosine_fake 展平为 [B, N] 以使用 topk
|
||||
weight_fake = torch.ones_like(cosine_fake).view(cosine_fake.shape[0], -1) # 初始化权重图,并展平为 [B, N]
|
||||
for b in range(cosine_fake.shape[0]):
|
||||
weight_fake[b, fake_indices[b]] = self.lambda_inc / (1e-6 + torch.abs(cosine_fake.view(cosine_fake.shape[0], -1)[b, fake_indices[b]]))
|
||||
weight_fake = weight_fake.view(-1, H, W).unsqueeze(1) # 重新 reshape 为 [B, H, W],并添加通道维度变为 [B, 1, H, W]
|
||||
return weight_fake
|
||||
# 计算加权后的 GAN 损失
|
||||
weighted_loss = torch.mean(weight * self.criterionGAN(scores, target))
|
||||
|
||||
def forward(self, D_real, D_fake, real_scores, fake_scores):
|
||||
"""
|
||||
计算内容感知对抗损失
|
||||
Args:
|
||||
D_real: 判别器对真实图像的特征输出 [B, C, H, W]
|
||||
D_fake: 判别器对生成图像的特征输出 [B, C, H, W]
|
||||
real_scores: 真实图像的判别器预测 [B, N] (N=H*W)
|
||||
fake_scores: 生成图像的判别器预测 [B, N]
|
||||
Returns:
|
||||
loss_co_adv: 内容感知对抗损失
|
||||
"""
|
||||
B, C, H, W = D_real.shape
|
||||
N = H * W
|
||||
shape_hw = [H, W]
|
||||
# 注册钩子获取梯度
|
||||
gradients_real = []
|
||||
gradients_fake = []
|
||||
return weighted_loss, weight
|
||||
|
||||
def hook_real(grad):
|
||||
gradients_real.append(grad.detach().view(B, N, -1))
|
||||
|
||||
def hook_fake(grad):
|
||||
gradients_fake.append(grad.detach().view(B, N, -1))
|
||||
|
||||
D_real.register_hook(hook_real)
|
||||
D_fake.register_hook(hook_fake)
|
||||
|
||||
# 计算原始对抗损失以触发梯度计算
|
||||
loss_real = torch.mean(torch.log(real_scores + 1e-8))
|
||||
loss_fake = torch.mean(torch.log(1 - fake_scores + 1e-8))
|
||||
# 添加与 D_real、D_fake 相关的 dummy 项,确保梯度传递
|
||||
loss_dummy = 1e-8 * (D_real.sum() + D_fake.sum())
|
||||
total_loss = loss_real + loss_fake + loss_dummy
|
||||
total_loss.backward(retain_graph=True)
|
||||
|
||||
# 获取梯度数据
|
||||
gradients_real = gradients_real[1] # [B, N, D]
|
||||
gradients_fake = gradients_fake[1] # [B, N, D]
|
||||
|
||||
# 生成权重图
|
||||
self.weight_real, self.weight_fake = self.generate_weight_map(gradients_fake, shape_hw )
|
||||
|
||||
# 应用权重到对抗损失
|
||||
loss_co_real = torch.mean(self.weight_real * torch.log(real_scores + 1e-8))
|
||||
loss_co_fake = torch.mean(self.weight_fake * torch.log(1 - fake_scores + 1e-8))
|
||||
|
||||
# 计算并返回最终内容感知对抗损失
|
||||
loss_co_adv = -(loss_co_real + loss_co_fake)
|
||||
|
||||
return loss_co_adv
|
||||
|
||||
class ContentAwareTemporalNorm(nn.Module):
|
||||
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
|
||||
@ -217,84 +113,80 @@ class ContentAwareTemporalNorm(nn.Module):
|
||||
self.gamma_stride = gamma_stride # 控制整体运动幅度
|
||||
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
||||
|
||||
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
|
||||
# weight_patch: [B, 1, H, W] 来自转换后的 weight_map
|
||||
weight_full = F.interpolate(
|
||||
weight_patch,
|
||||
size=target_size,
|
||||
mode='bilinear', # 或 'nearest',根据需求选择
|
||||
align_corners=False
|
||||
)
|
||||
return weight_full
|
||||
|
||||
def forward(self, weight_map):
|
||||
"""
|
||||
生成内容感知光流
|
||||
Args:
|
||||
weight_map: [B, 1, H, W] 权重图(来自内容感知优化模块)
|
||||
weight_map: [B, N] 权重图(来自 ContentAwareOptimization),其中 N=576
|
||||
Returns:
|
||||
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
||||
"""
|
||||
print(weight_map.shape)
|
||||
B, _, H, W = weight_map.shape
|
||||
B = weight_map.shape[0]
|
||||
N = weight_map.shape[1]
|
||||
# 假设 N 为完全平方数,计算边长(例如 576 -> 24x24)
|
||||
side = int(math.sqrt(N))
|
||||
weight_map_2d = weight_map.view(B, 1, side, side) # 转换为 [B, 1, side, side]
|
||||
|
||||
# 1. 归一化权重图
|
||||
# 保持区域相对强度,同时限制数值范围
|
||||
weight_norm = F.normalize(weight_map, p=1, dim=(2,3)) # L1归一化 [B,1,H,W]
|
||||
# 上采样权重图到全分辨率
|
||||
weight_full = self.upsample_weight_map(weight_map_2d) # [B, 1, 256, 256](例如)
|
||||
|
||||
# 2. 生成高斯噪声(与光流场同尺寸)
|
||||
z = torch.randn(B, 2, H, W, device=weight_map.device) # [B,2,H,W]
|
||||
# 归一化权重图(L1归一化)
|
||||
weight_norm = F.normalize(weight_full, p=1, dim=(2,3))
|
||||
|
||||
# 3. 合成基础光流
|
||||
# 将权重图扩展为2通道(x/y方向共享权重)
|
||||
weight_expanded = weight_norm.expand(-1, 2, -1, -1) # [B,2,H,W]
|
||||
F_raw = self.gamma_stride * weight_expanded * z # [B,2,H,W] #公式9
|
||||
# 生成高斯噪声
|
||||
B, _, H, W = weight_norm.shape
|
||||
z = torch.randn(B, 2, H, W, device=weight_norm.device)
|
||||
|
||||
# 4. 平滑处理(保持结构连续性)
|
||||
# 对每个通道独立进行高斯模糊
|
||||
F_smooth = self.smoother(F_raw) # [B,2,H,W]
|
||||
# 合成基础光流
|
||||
weight_expanded = weight_norm.expand(-1, 2, -1, -1)
|
||||
F_raw = self.gamma_stride * weight_expanded * z
|
||||
|
||||
# 5. 动态范围调整(可选)
|
||||
# 限制光流幅值,避免极端位移
|
||||
F_content = torch.tanh(F_smooth) # 缩放到[-1,1]范围
|
||||
# 平滑处理
|
||||
F_smooth = self.smoother(F_raw)
|
||||
|
||||
# 动态范围调整
|
||||
F_content = torch.tanh(F_smooth)
|
||||
|
||||
return F_content
|
||||
|
||||
|
||||
class RomaUnsbModel(BaseModel):
|
||||
@staticmethod
|
||||
def modify_commandline_options(parser, is_train=True):
|
||||
"""配置 CTNx 模型的特定选项"""
|
||||
|
||||
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
|
||||
parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
|
||||
parser.add_argument('--lambda_SB', type=float, default=0.1, help='weight for SB loss')
|
||||
|
||||
parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm')
|
||||
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
|
||||
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
||||
|
||||
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))')
|
||||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
||||
parser.add_argument('--nce_includes_all_negatives_from_minibatch',
|
||||
type=util.str2bool, nargs='?', const=True, default=False,
|
||||
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.')
|
||||
|
||||
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map')
|
||||
parser.add_argument('--netF_nc', type=int, default=256)
|
||||
parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss')
|
||||
|
||||
parser.add_argument('--lmda_1', type=float, default=0.1)
|
||||
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
|
||||
parser.add_argument('--flip_equivariance',
|
||||
type=util.str2bool, nargs='?', const=True, default=False,
|
||||
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT")
|
||||
|
||||
parser.add_argument('--lambda_spatial', type=float, default=1.0, help='weight for Local Structural Consistency')
|
||||
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
|
||||
parser.add_argument('--eta_ratio', type=float, default=0.1, help='ratio of content-rich regions')
|
||||
parser.add_argument('--local_nums', type=int, default=64, help='number of local patches')
|
||||
parser.add_argument('--side_length', type=int, default=7)
|
||||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
||||
|
||||
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions')
|
||||
parser.add_argument('--gamma_stride', type=float, default=20, help='ratio of stride for computing the similarity matrix')
|
||||
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
|
||||
|
||||
parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter')
|
||||
parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer')
|
||||
parser.add_argument('--adj_size_list', type=list, default=[2, 4, 6, 8, 12], help='different scales of perception field')
|
||||
|
||||
parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers')
|
||||
|
||||
parser.set_defaults(pool_size=0) # no image pooling
|
||||
|
||||
opt, _ = parser.parse_known_args()
|
||||
|
||||
# 直接设置为 sb 模式
|
||||
parser.set_defaults(nce_idt=True, lambda_NCE=1.0)
|
||||
|
||||
return parser
|
||||
|
||||
def __init__(self, opt):
|
||||
@ -302,11 +194,11 @@ class RomaUnsbModel(BaseModel):
|
||||
BaseModel.__init__(self, opt)
|
||||
|
||||
# 指定需要打印的训练损失
|
||||
self.loss_names = ['G_GAN_1', 'D_real_1', 'D_fake_1', 'G_1', 'NCE_1', 'SB_1',
|
||||
'G_2']
|
||||
self.visual_names = ['real_A', 'real_A_noisy', 'fake_B', 'real_B']
|
||||
self.loss_names = ['G_GAN', 'D_ViT', 'G', 'global', 'spatial','ctn']
|
||||
self.visual_names = ['real_A0', 'fake_B0', 'real_B0','real_A1', 'fake_B1', 'real_B1']
|
||||
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
|
||||
|
||||
|
||||
if self.opt.phase == 'test':
|
||||
self.visual_names = ['real']
|
||||
for NFE in range(self.opt.num_timesteps):
|
||||
@ -314,24 +206,18 @@ class RomaUnsbModel(BaseModel):
|
||||
self.visual_names.append(fake_name)
|
||||
self.nce_layers = [int(i) for i in self.opt.nce_layers.split(',')]
|
||||
|
||||
if opt.nce_idt and self.isTrain:
|
||||
self.loss_names += ['NCE_Y']
|
||||
self.visual_names += ['idt_B']
|
||||
|
||||
if self.isTrain:
|
||||
self.model_names = ['G', 'D_ViT', 'E']
|
||||
|
||||
self.model_names = ['G', 'D_ViT']
|
||||
|
||||
else:
|
||||
self.model_names = ['G']
|
||||
|
||||
print(f'input_nc = {self.opt.input_nc}')
|
||||
# 创建网络
|
||||
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
||||
|
||||
|
||||
if self.isTrain:
|
||||
self.netE = networks.define_D(opt.output_nc*4, opt.ndf, opt.netD, opt.n_layers_D, opt.normD, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt)
|
||||
|
||||
self.resize = tfs.Resize(size=(384,384), antialias=True)
|
||||
|
||||
@ -343,14 +229,9 @@ class RomaUnsbModel(BaseModel):
|
||||
# 定义损失函数
|
||||
self.criterionL1 = torch.nn.L1Loss().to(self.device)
|
||||
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
||||
self.criterionNCE = []
|
||||
for nce_layer in self.nce_layers:
|
||||
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
|
||||
self.criterionIdt = torch.nn.L1Loss().to(self.device)
|
||||
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||
self.optimizer_D = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||
self.optimizer_E = torch.optim.Adam(self.netE.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||
self.optimizers = [self.optimizer_G, self.optimizer_D, self.optimizer_E]
|
||||
self.optimizers = [self.optimizer_G, self.optimizer_D]
|
||||
|
||||
self.cao = ContentAwareOptimization(opt.lambda_inc, opt.eta_ratio) #损失函数
|
||||
self.ctn = ContentAwareTemporalNorm() #生成的伪光流
|
||||
@ -362,19 +243,6 @@ class RomaUnsbModel(BaseModel):
|
||||
initialized at the first feedforward pass with some input images.
|
||||
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
|
||||
"""
|
||||
#bs_per_gpu = data["A"].size(0) // max(len(self.opt.gpu_ids), 1)
|
||||
#self.set_input(data)
|
||||
#self.real_A = self.real_A[:bs_per_gpu]
|
||||
#self.real_B = self.real_B[:bs_per_gpu]
|
||||
#self.forward() # compute fake images: G(A)
|
||||
#if self.opt.isTrain:
|
||||
#
|
||||
# self.compute_G_loss().backward()
|
||||
# self.compute_D_loss().backward()
|
||||
# self.compute_E_loss().backward()
|
||||
# if self.opt.lambda_NCE > 0.0:
|
||||
# self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2))
|
||||
# self.optimizers.append(self.optimizer_F)
|
||||
pass
|
||||
|
||||
def optimize_parameters(self):
|
||||
@ -382,7 +250,6 @@ class RomaUnsbModel(BaseModel):
|
||||
self.forward()
|
||||
|
||||
self.netG.train()
|
||||
self.netE.train()
|
||||
self.netD_ViT.train()
|
||||
|
||||
# update D
|
||||
@ -392,19 +259,9 @@ class RomaUnsbModel(BaseModel):
|
||||
self.loss_D.backward()
|
||||
self.optimizer_D.step()
|
||||
|
||||
# update E
|
||||
self.set_requires_grad(self.netE, True)
|
||||
self.optimizer_E.zero_grad()
|
||||
self.loss_E = self.compute_E_loss()
|
||||
self.loss_E.backward()
|
||||
self.optimizer_E.step()
|
||||
|
||||
# update G
|
||||
self.set_requires_grad(self.netD_ViT, False)
|
||||
self.set_requires_grad(self.netE, False)
|
||||
|
||||
self.optimizer_G.zero_grad()
|
||||
|
||||
self.loss_G = self.compute_G_loss()
|
||||
self.loss_G.backward()
|
||||
self.optimizer_G.step()
|
||||
@ -423,220 +280,109 @@ class RomaUnsbModel(BaseModel):
|
||||
self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device)
|
||||
self.image_paths = input['A_paths' if AtoB else 'B_paths']
|
||||
|
||||
def tokens_concat(self, origin_tokens, adjacent_size):
|
||||
adj_size = adjacent_size
|
||||
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
|
||||
S = int(math.sqrt(token_num))
|
||||
if S * S != token_num:
|
||||
print('Error! Not a square!')
|
||||
token_map = origin_tokens.clone().reshape(B,S,S,C)
|
||||
cut_patch_list = []
|
||||
for i in range(0, S, adj_size):
|
||||
for j in range(0, S, adj_size):
|
||||
i_left = i
|
||||
i_right = i + adj_size + 1 if i + adj_size <= S else S + 1
|
||||
j_left = j
|
||||
j_right = j + adj_size if j + adj_size <= S else S + 1
|
||||
|
||||
cut_patch = token_map[:, i_left:i_right, j_left: j_right, :]
|
||||
cut_patch= cut_patch.reshape(B,-1,C)
|
||||
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
|
||||
cut_patch_list.append(cut_patch)
|
||||
|
||||
result = torch.cat(cut_patch_list,dim=1)
|
||||
return result
|
||||
|
||||
def cat_results(self, origin_tokens, adj_size_list):
|
||||
res_list = [origin_tokens]
|
||||
for ad_s in adj_size_list:
|
||||
cat_result = self.tokens_concat(origin_tokens, ad_s)
|
||||
res_list.append(cat_result)
|
||||
|
||||
result = torch.cat(res_list, dim=1)
|
||||
return result
|
||||
|
||||
def forward(self):
|
||||
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
||||
self.fake_B0 = self.netG(self.real_A0)
|
||||
self.fake_B1 = self.netG(self.real_A1)
|
||||
|
||||
# ============ 第一步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||||
tau = self.opt.tau
|
||||
T = self.opt.num_timesteps
|
||||
incs = np.array([0] + [1/(i+1) for i in range(T-1)])
|
||||
times = np.cumsum(incs)
|
||||
times = times / times[-1]
|
||||
times = 0.5 * times[-1] + 0.5 * times #[0.5,1]
|
||||
times = np.concatenate([np.zeros(1), times])
|
||||
times = torch.tensor(times).float().cuda()
|
||||
self.times = times
|
||||
bs = self.real_A0.size(0)
|
||||
time_idx = (torch.randint(T, size=[1]).cuda() * torch.ones(size=[1]).cuda()).long()
|
||||
self.time_idx = time_idx
|
||||
|
||||
with torch.no_grad():
|
||||
self.netG.eval()
|
||||
# ============ 第二步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||||
for t in range(self.time_idx.int().item() + 1):
|
||||
# 计算增量 delta 与 inter/scale,用于每个时间步的插值等
|
||||
if t > 0:
|
||||
delta = times[t] - times[t - 1]
|
||||
denom = times[-1] - times[t - 1]
|
||||
inter = (delta / denom).reshape(-1, 1, 1, 1)
|
||||
scale = (delta * (1 - delta / denom)).reshape(-1, 1, 1, 1)
|
||||
|
||||
# 对 Xt、Xt2 进行随机噪声更新
|
||||
Xt = self.real_A0 if (t == 0) else (1 - inter) * Xt + inter * Xt_1.detach() + \
|
||||
(scale * tau).sqrt() * torch.randn_like(Xt).to(self.real_A0.device)
|
||||
time_idx = (t * torch.ones(size=[self.real_A0.shape[0]]).to(self.real_A0.device)).long()
|
||||
z = torch.randn(size=[self.real_A0.shape[0], 4 * self.opt.ngf]).to(self.real_A0.device)
|
||||
self.time = times[time_idx]
|
||||
Xt_1 = self.netG(Xt, self.time, z)
|
||||
|
||||
Xt2 = self.real_A1 if (t == 0) else (1 - inter) * Xt2 + inter * Xt_12.detach() + \
|
||||
(scale * tau).sqrt() * torch.randn_like(Xt2).to(self.real_A1.device)
|
||||
time_idx = (t * torch.ones(size=[self.real_A1.shape[0]]).to(self.real_A1.device)).long()
|
||||
z = torch.randn(size=[self.real_A1.shape[0], 4 * self.opt.ngf]).to(self.real_A1.device)
|
||||
Xt_12 = self.netG(Xt2, self.time, z)
|
||||
|
||||
# 保存去噪后的中间结果 (real_A_noisy 等),供下一步做拼接
|
||||
self.real_A_noisy = Xt.detach()
|
||||
self.real_A_noisy2 = Xt2.detach()
|
||||
|
||||
# ============ 第三步:拼接输入并执行网络推理 =============
|
||||
bs = self.real_A0.size(0)
|
||||
z_in = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A0.device)
|
||||
z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.real_A1.device)
|
||||
# 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB
|
||||
self.real = self.real_A0
|
||||
self.realt = self.real_A_noisy
|
||||
|
||||
if self.opt.flip_equivariance:
|
||||
self.flipped_for_equivariance = self.opt.isTrain and (np.random.random() < 0.5)
|
||||
if self.flipped_for_equivariance:
|
||||
self.real = torch.flip(self.real, [3])
|
||||
self.realt = torch.flip(self.realt, [3])
|
||||
|
||||
self.fake_B0 = self.netG(self.real_A0, self.time, z_in)
|
||||
self.fake_B1 = self.netG(self.real_A1, self.time, z_in2)
|
||||
|
||||
if self.opt.phase == 'train':
|
||||
if self.opt.isTrain:
|
||||
real_A0 = self.real_A0
|
||||
real_A1 = self.real_A1
|
||||
real_B0 = self.real_B0
|
||||
real_B1 = self.real_B1
|
||||
fake_B0 = self.fake_B0
|
||||
fake_B1 = self.fake_B1
|
||||
|
||||
self.real_A0_resize = self.resize(real_A0)
|
||||
self.real_A1_resize = self.resize(real_A1)
|
||||
real_B0 = self.resize(real_B0)
|
||||
real_B1 = self.resize(real_B1)
|
||||
self.fake_B0_resize = self.resize(fake_B0)
|
||||
self.fake_B1_resize = self.resize(fake_B1)
|
||||
|
||||
self.mutil_real_A0_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_A1_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B0_tokens = self.netPreViT(real_B0, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B1_tokens = self.netPreViT(real_B1, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B0_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
|
||||
# [[1,576,768],[1,576,768],[1,576,768]]
|
||||
# [3,576,768]
|
||||
#self.mutil_real_A0_tokens = self.cat_results(self.mutil_real_A0_tokens[0], self.opt.adj_size_list)
|
||||
#print(f'self.mutil_real_A0_tokens[0]:{self.mutil_real_A0_tokens[0].shape}')
|
||||
|
||||
shape_hw = list(self.real_A0_resize.shape[2:4])
|
||||
# 生成图像的梯度
|
||||
fake_gradient = torch.autograd.grad(self.mutil_fake_B0_tokens[0].sum(), self.mutil_fake_B0_tokens, create_graph=True)[0]
|
||||
|
||||
# 梯度图
|
||||
self.weight_fake = self.cao.generate_weight_map_image(fake_gradient, shape_hw)
|
||||
|
||||
# 生成图像的CTN光流图
|
||||
self.f_content = self.ctn(self.weight_fake)
|
||||
|
||||
# 变换后的图片
|
||||
self.warped_real_A_noisy2 = warp(self.real_A_noisy, self.f_content)
|
||||
self.warped_fake_B0 = warp(self.fake_B0,self.f_content)
|
||||
|
||||
# 经过第二次生成器
|
||||
self.warped_fake_B0_2 = self.netG(self.warped_real_A_noisy2, self.time, z_in)
|
||||
|
||||
# warped_fake_B0_2=self.warped_fake_B0_2
|
||||
# warped_fake_B0=self.warped_fake_B0
|
||||
# self.warped_fake_B0_2_resize = self.resize(warped_fake_B0_2)
|
||||
# self.warped_fake_B0_resize = self.resize(warped_fake_B0)
|
||||
# self.mutil_warped_fake_B0_tokens = self.netPreViT(self.warped_fake_B0_resize, self.atten_layers, get_tokens=True)
|
||||
# self.mutil_fake_B0_2_tokens = self.netPreViT(self.warped_fake_B0_2_resize, self.atten_layers, get_tokens=True)
|
||||
|
||||
|
||||
def compute_D_loss(self): #判别器还是没有改
|
||||
"""Calculate GAN loss for the discriminator"""
|
||||
|
||||
def compute_D_loss(self):
|
||||
"""Calculate GAN loss with Content-Aware Optimization"""
|
||||
lambda_D_ViT = self.opt.lambda_D_ViT
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach()
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens[0].detach()
|
||||
|
||||
# 处理 real_B0 和 fake_B0
|
||||
real_B0_tokens = self.mutil_real_B0_tokens[0]
|
||||
pred_real0 = self.netD_ViT(real_B0_tokens)
|
||||
fake_B0_tokens = self.mutil_fake_B0_tokens[0].detach()
|
||||
pred_fake0 = self.netD_ViT(fake_B0_tokens)
|
||||
|
||||
loss_real0, self.weight_real0 = self.cao( pred_real0, True)
|
||||
loss_fake0, self.weight_fake0 = self.cao( pred_fake0, False)
|
||||
|
||||
# 处理 real_B1 和 fake_B1
|
||||
real_B1_tokens = self.mutil_real_B1_tokens[0]
|
||||
pred_real1 = self.netD_ViT(real_B1_tokens)
|
||||
fake_B1_tokens = self.mutil_fake_B1_tokens[0].detach()
|
||||
pred_fake1 = self.netD_ViT(fake_B1_tokens)
|
||||
|
||||
loss_real1, self.weight_real1 = self.cao( pred_real1, True)
|
||||
loss_fake1, self.weight_fake1 = self.cao( pred_fake1, False)
|
||||
|
||||
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||||
pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
||||
|
||||
self.loss_D_fake_ViT = (self.criterionGAN(pre_fake0_ViT, False).mean() + self.criterionGAN(pre_fake1_ViT, False).mean()) * 0.5 * lambda_D_ViT
|
||||
|
||||
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
|
||||
pred_real1_ViT = self.netD_ViT(real_B1_tokens)
|
||||
self.loss_D_real_ViT = (self.criterionGAN(pred_real0_ViT, True).mean() + self.criterionGAN(pred_real1_ViT, True).mean()) * 0.5 * lambda_D_ViT
|
||||
|
||||
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5
|
||||
|
||||
# 综合损失
|
||||
self.loss_D_ViT = (loss_real0 + loss_fake0 + loss_real1 + loss_fake1) * 0.25 * lambda_D_ViT
|
||||
|
||||
return self.loss_D_ViT
|
||||
|
||||
def compute_E_loss(self):
|
||||
"""计算判别器 E 的损失"""
|
||||
|
||||
print(f'resl_A_noisy: {self.real_A_noisy.shape} \n fake_B0: {self.fake_B0.shape}')
|
||||
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0.detach()], dim=1)
|
||||
XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1.detach()], dim=1)
|
||||
temp = torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0).mean()
|
||||
self.loss_E = -self.netE(XtXt_1, self.time, XtXt_1).mean() + temp + temp**2
|
||||
|
||||
return self.loss_E
|
||||
|
||||
def compute_G_loss(self):
|
||||
"""计算生成器的 GAN 损失"""
|
||||
"""计算生成器的损失"""
|
||||
# 初始化总损失
|
||||
self.loss_G_GAN = 0.0
|
||||
self.loss_ctn = 0.0
|
||||
self.loss_global = 0.0
|
||||
self.loss_spatial = 0.0
|
||||
|
||||
# 计算 CTN 损失
|
||||
if self.opt.lambda_ctn > 0.0:
|
||||
# 生成光流图(使用判别器的权重)
|
||||
self.f_content0 = self.ctn(self.weight_fake0.detach())
|
||||
self.f_content1 = self.ctn(self.weight_fake1.detach())
|
||||
|
||||
# 变换后的图片
|
||||
self.warped_real_A0 = warp(self.real_A0, self.f_content0)
|
||||
self.warped_real_A1 = warp(self.real_A1, self.f_content1)
|
||||
self.warped_fake_B0 = warp(self.fake_B0, self.f_content0)
|
||||
self.warped_fake_B1 = warp(self.fake_B1, self.f_content1)
|
||||
|
||||
# 第二次生成
|
||||
self.warped_fake_B0_2 = self.netG(self.warped_real_A0)
|
||||
self.warped_fake_B1_2 = self.netG(self.warped_real_A1)
|
||||
|
||||
# 计算 L2 损失
|
||||
self.loss_ctn0 = F.mse_loss(self.warped_fake_B0_2, self.warped_fake_B0)
|
||||
self.loss_ctn1 = F.mse_loss(self.warped_fake_B1_2, self.warped_fake_B1)
|
||||
self.loss_ctn = (self.loss_ctn0 + self.loss_ctn1) * 0.5
|
||||
|
||||
# 计算 GAN 损失(引入 ContentAwareOptimization)
|
||||
if self.opt.lambda_GAN > 0.0:
|
||||
pred_fake = self.netD_ViT(self.mutil_fake_B0_tokens[0])
|
||||
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN
|
||||
|
||||
pred_fake0 = self.netD_ViT(self.mutil_fake_B0_tokens[0])
|
||||
pred_fake1 = self.netD_ViT(self.mutil_fake_B1_tokens[0])
|
||||
self.loss_G_GAN0 = self.criterionGAN(pred_fake0, True).mean()
|
||||
self.loss_G_GAN1 = self.criterionGAN(pred_fake1, True).mean()
|
||||
self.loss_G_GAN = (self.loss_G_GAN0 + self.loss_G_GAN1)*0.5
|
||||
else:
|
||||
self.loss_G_GAN = 0.0
|
||||
self.loss_SB = 0
|
||||
if self.opt.lambda_SB > 0.0:
|
||||
XtXt_1 = torch.cat([self.real_A_noisy, self.fake_B0], dim=1)
|
||||
XtXt_2 = torch.cat([self.real_A_noisy2, self.fake_B1], dim=1)
|
||||
|
||||
bs = self.opt.batch_size
|
||||
|
||||
# eq.9
|
||||
ET_XY = self.netE(XtXt_1, self.time, XtXt_1).mean() - torch.logsumexp(self.netE(XtXt_1, self.time, XtXt_2).reshape(-1), dim=0)
|
||||
self.loss_SB = -(self.opt.num_timesteps - self.time[0]) / self.opt.num_timesteps * self.opt.tau * ET_XY
|
||||
self.loss_SB += self.opt.tau * torch.mean((self.real_A_noisy - self.fake_B0) ** 2)
|
||||
if self.opt.lambda_global or self.opt.lambda_spatial > 0.0:
|
||||
self.loss_global, self.loss_spatial = self.calculate_attention_loss()
|
||||
|
||||
if self.opt.lambda_global > 0.0:
|
||||
loss_global = self.calculate_similarity(self.real_A0, self.fake_B0) + self.calculate_similarity(self.real_A1, self.fake_B1)
|
||||
loss_global *= 0.5
|
||||
else:
|
||||
loss_global = 0.0
|
||||
# 总损失
|
||||
self.loss_G = self.opt.lambda_GAN * self.loss_G_GAN + \
|
||||
self.opt.lambda_ctn * self.loss_ctn + \
|
||||
self.opt.lambda_global * self.loss_global + \
|
||||
self.opt.lambda_spatial * self.loss_spatial
|
||||
|
||||
self.l2_loss = 0.0
|
||||
if self.opt.lambda_l2 > 0.0:
|
||||
wapped_fake_B = warp(self.fake_B0, self.f_content) # use updated self.f_content
|
||||
self.l2_loss = F.mse_loss(self.warped_fake_B0_2, wapped_fake_B) # complete the loss calculation
|
||||
|
||||
self.loss_G = self.loss_G_GAN + self.opt.lambda_SB * self.loss_SB + self.opt.lambda_ctn * self.l2_loss + loss_global * self.opt.lambda_global
|
||||
return self.loss_G
|
||||
|
||||
def calculate_attention_loss(self):
|
||||
@ -661,19 +407,18 @@ class RomaUnsbModel(BaseModel):
|
||||
local_id = np.random.permutation(tokens_cnt)
|
||||
local_id = local_id[:int(min(local_nums, tokens_cnt))]
|
||||
|
||||
mutil_real_A0_local_tokens = self.netPreViT(self.resize(self.real_A0), self.atten_layers, get_tokens=True, local_id=local_id, side_length=self.opt.side_length)
|
||||
mutil_real_A1_local_tokens = self.netPreViT(self.resize(self.real_A1), self.atten_layers, get_tokens=True, local_id=local_id, side_length=self.opt.side_length)
|
||||
mutil_real_A0_local_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
mutil_real_A1_local_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
|
||||
mutil_fake_B0_local_tokens = self.netPreViT(self.resize(self.fake_B0), self.atten_layers, get_tokens=True, local_id=local_id, side_length=self.opt.side_length)
|
||||
mutil_fake_B1_local_tokens = self.netPreViT(self.resize(self.fake_B1), self.atten_layers, get_tokens=True, local_id=local_id, side_length=self.opt.side_length)
|
||||
mutil_fake_B0_local_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
mutil_fake_B1_local_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
|
||||
loss_spatial = self.calculate_similarity(mutil_real_A0_local_tokens, mutil_fake_B0_local_tokens) + self.calculate_similarity(mutil_real_A1_local_tokens, mutil_fake_B1_local_tokens)
|
||||
loss_spatial *= 0.5
|
||||
|
||||
else:
|
||||
loss_spatial = 0.0
|
||||
|
||||
return loss_global * self.opt.lambda_global, loss_spatial * self.opt.lambda_spatial
|
||||
return loss_global , loss_spatial
|
||||
|
||||
def calculate_similarity(self, mutil_src_tokens, mutil_tgt_tokens):
|
||||
loss = 0.0
|
||||
@ -688,5 +433,3 @@ class RomaUnsbModel(BaseModel):
|
||||
loss = loss / n_layers
|
||||
return loss
|
||||
|
||||
|
||||
|
||||
391
models/roma_unsb_single_model.py
Normal file
@ -0,0 +1,391 @@
|
||||
import numpy as np
|
||||
import math
|
||||
import timm
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torchvision.transforms import GaussianBlur
|
||||
from .base_model import BaseModel
|
||||
from . import networks
|
||||
from .patchnce import PatchNCELoss
|
||||
import util.util as util
|
||||
|
||||
from torchvision.transforms import transforms as tfs
|
||||
|
||||
def warp(image, flow): #warp操作
|
||||
"""
|
||||
基于光流的图像变形函数
|
||||
Args:
|
||||
image: [B, C, H, W] 输入图像
|
||||
flow: [B, 2, H, W] 光流场(x/y方向位移)
|
||||
Returns:
|
||||
warped: [B, C, H, W] 变形后的图像
|
||||
"""
|
||||
B, C, H, W = image.shape
|
||||
# 生成网格坐标
|
||||
grid_x, grid_y = torch.meshgrid(torch.arange(W), torch.arange(H))
|
||||
grid = torch.stack((grid_x, grid_y), dim=0).float().to(image.device) # [2,H,W]
|
||||
grid = grid.unsqueeze(0).repeat(B,1,1,1) # [B,2,H,W]
|
||||
|
||||
# 应用光流位移(归一化到[-1,1])
|
||||
new_grid = grid + flow
|
||||
new_grid[:,0,:,:] = 2.0 * new_grid[:,0,:,:] / (W-1) - 1.0 # x方向
|
||||
new_grid[:,1,:,:] = 2.0 * new_grid[:,1,:,:] / (H-1) - 1.0 # y方向
|
||||
new_grid = new_grid.permute(0,2,3,1) # [B,H,W,2]
|
||||
|
||||
# 双线性插值
|
||||
return F.grid_sample(image, new_grid, align_corners=True)
|
||||
|
||||
|
||||
class ContentAwareOptimization(nn.Module):
|
||||
def __init__(self, lambda_inc=2.0, eta_ratio=0.4):
|
||||
super().__init__()
|
||||
self.lambda_inc = lambda_inc # 控制内容丰富区域的权重增量
|
||||
self.eta_ratio = eta_ratio # 选择内容丰富区域的比例
|
||||
self.criterionGAN = networks.GANLoss('lsgan').cuda() # 使用 LSGAN 损失
|
||||
|
||||
def compute_cosine_similarity(self, grad_patch, grad_mean):
|
||||
"""
|
||||
计算每个 token 梯度与整体平均梯度的余弦相似度
|
||||
Args:
|
||||
grad_patch: [B, N, D],每个 token 的梯度(来自 scores)
|
||||
grad_mean: [B, D],整体平均梯度
|
||||
Returns:
|
||||
cosine: [B, N],余弦相似度 δ_i
|
||||
"""
|
||||
# 对每个 token 计算余弦相似度
|
||||
cosine = F.cosine_similarity(grad_patch, grad_mean.unsqueeze(1), dim=2) # [B, N]
|
||||
return cosine
|
||||
|
||||
def generate_weight_map(self, cosine):
|
||||
"""
|
||||
根据余弦相似度生成权重图
|
||||
Args:
|
||||
cosine: [B, N],余弦相似度 δ_i
|
||||
Returns:
|
||||
weights: [B, N],权重图 w_i
|
||||
"""
|
||||
B, N = cosine.shape
|
||||
k = int(self.eta_ratio * N) # 选择 eta_ratio 比例的 token
|
||||
_, indices = torch.topk(-cosine, k, dim=1) # 选择偏离最大的 k 个 token
|
||||
weights = torch.ones_like(cosine)
|
||||
for b in range(B):
|
||||
selected_cosine = cosine[b, indices[b]]
|
||||
weights[b, indices[b]] = self.lambda_inc / (torch.exp(torch.abs(selected_cosine)) + 1e-6)
|
||||
return weights
|
||||
|
||||
def forward(self, scores, target):
|
||||
"""
|
||||
前向传播,计算加权后的 GAN 损失
|
||||
Args:
|
||||
scores: [B, N, D],判别器的预测得分
|
||||
target: 目标标签(True 或 False)
|
||||
Returns:
|
||||
weighted_loss: 加权后的 GAN 损失
|
||||
weight: 权重图 [B, N]
|
||||
"""
|
||||
# 计算原始 GAN 损失(假设 criterionGAN 返回 [B, N] 的损失分布)
|
||||
loss = self.criterionGAN(scores, target)
|
||||
|
||||
# 捕获 scores 的梯度,形状为 [B, N, D]
|
||||
grad_scores = torch.autograd.grad(loss, scores, retain_graph=True)[0]
|
||||
|
||||
# 计算整体平均梯度(在 N 维度上求均值)
|
||||
grad_mean = torch.mean(grad_scores, dim=1) # [B, D]
|
||||
|
||||
# 计算余弦相似度 δ_i
|
||||
cosine = self.compute_cosine_similarity(grad_scores, grad_mean) # [B, N]
|
||||
|
||||
# 生成权重图 w_i
|
||||
weight = self.generate_weight_map(cosine) # [B, N]
|
||||
|
||||
# 计算加权后的 GAN 损失
|
||||
weighted_loss = torch.mean(weight * self.criterionGAN(scores, target))
|
||||
|
||||
return weighted_loss, weight
|
||||
|
||||
|
||||
class ContentAwareTemporalNorm(nn.Module):
|
||||
def __init__(self, gamma_stride=0.1, kernel_size=21, sigma=5.0):
|
||||
super().__init__()
|
||||
self.gamma_stride = gamma_stride # 控制整体运动幅度
|
||||
self.smoother = GaussianBlur(kernel_size, sigma=sigma) # 高斯平滑层
|
||||
|
||||
def upsample_weight_map(self, weight_patch, target_size=(256, 256)):
|
||||
# weight_patch: [B, 1, H, W] 来自转换后的 weight_map
|
||||
weight_full = F.interpolate(
|
||||
weight_patch,
|
||||
size=target_size,
|
||||
mode='bilinear', # 或 'nearest',根据需求选择
|
||||
align_corners=False
|
||||
)
|
||||
return weight_full
|
||||
|
||||
def forward(self, weight_map):
|
||||
"""
|
||||
生成内容感知光流
|
||||
Args:
|
||||
weight_map: [B, N] 权重图(来自 ContentAwareOptimization),其中 N=576
|
||||
Returns:
|
||||
F_content: [B, 2, H, W] 生成的光流场(x/y方向位移)
|
||||
"""
|
||||
B = weight_map.shape[0]
|
||||
N = weight_map.shape[1]
|
||||
# 假设 N 为完全平方数,计算边长(例如 576 -> 24x24)
|
||||
side = int(math.sqrt(N))
|
||||
weight_map_2d = weight_map.view(B, 1, side, side) # 转换为 [B, 1, side, side]
|
||||
|
||||
# 上采样权重图到全分辨率
|
||||
weight_full = self.upsample_weight_map(weight_map_2d) # [B, 1, 256, 256](例如)
|
||||
|
||||
# 归一化权重图(L1归一化)
|
||||
weight_norm = F.normalize(weight_full, p=1, dim=(2,3))
|
||||
|
||||
# 生成高斯噪声
|
||||
B, _, H, W = weight_norm.shape
|
||||
z = torch.randn(B, 2, H, W, device=weight_norm.device)
|
||||
|
||||
# 合成基础光流
|
||||
weight_expanded = weight_norm.expand(-1, 2, -1, -1)
|
||||
F_raw = self.gamma_stride * weight_expanded * z
|
||||
|
||||
# 平滑处理
|
||||
F_smooth = self.smoother(F_raw)
|
||||
|
||||
# 动态范围调整
|
||||
F_content = torch.tanh(F_smooth)
|
||||
|
||||
return F_content
|
||||
class RomaUnsbSingleModel(BaseModel):
|
||||
@staticmethod
|
||||
def modify_commandline_options(parser, is_train=True):
|
||||
"""配置 CTNx 模型的特定选项"""
|
||||
|
||||
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
|
||||
|
||||
parser.add_argument('--lambda_ctn', type=float, default=1.0, help='weight for content-aware temporal norm')
|
||||
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
|
||||
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
||||
parser.add_argument('--lambda_spatial', type=float, default=1.0, help='weight for Local Structural Consistency')
|
||||
parser.add_argument('--lambda_inc', type=float, default=1.0, help='incremental weight for content-aware optimization')
|
||||
parser.add_argument('--local_nums', type=int, default=64, help='number of local patches')
|
||||
parser.add_argument('--side_length', type=int, default=7)
|
||||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
|
||||
|
||||
parser.add_argument('--eta_ratio', type=float, default=0.4, help='ratio of content-rich regions')
|
||||
parser.add_argument('--gamma_stride', type=float, default=20, help='ratio of stride for computing the similarity matrix')
|
||||
parser.add_argument('--atten_layers', type=str, default='5', help='compute Cross-Similarity on which layers')
|
||||
|
||||
parser.add_argument('--tau', type=float, default=0.01, help='Entropy parameter')
|
||||
parser.add_argument('--num_timesteps', type=int, default=5, help='# of discrim filters in the first conv layer')
|
||||
|
||||
parser.add_argument('--n_mlp', type=int, default=3, help='only used if netD==n_layers')
|
||||
|
||||
opt, _ = parser.parse_known_args()
|
||||
|
||||
return parser
|
||||
|
||||
def __init__(self, opt):
|
||||
BaseModel.__init__(self, opt)
|
||||
|
||||
|
||||
self.loss_names = ['G_GAN', 'D_ViT', 'G', 'global', 'spatial','ctn']
|
||||
self.visual_names = ['real_A', 'fake_B', 'real_B']
|
||||
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
|
||||
|
||||
|
||||
if self.isTrain:
|
||||
self.model_names = ['G', 'D_ViT']
|
||||
else: # during test time, only load G
|
||||
self.model_names = ['G']
|
||||
|
||||
|
||||
# define networks (both generator and discriminator)
|
||||
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
||||
|
||||
|
||||
if self.isTrain:
|
||||
|
||||
self.netD_ViT = networks.MLPDiscriminator().to(self.device)
|
||||
# self.netPreViT = timm.create_model("vit_base_patch32_384",pretrained=True).to(self.device)
|
||||
self.netPreViT = timm.create_model("vit_base_patch16_384",pretrained=True).to(self.device)
|
||||
|
||||
|
||||
self.resize = tfs.Resize(size=(384,384))
|
||||
# self.resize = tfs.Resize(size=(224, 224))
|
||||
|
||||
# define loss functions
|
||||
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
||||
|
||||
self.criterionL1 = torch.nn.L1Loss().to(self.device)
|
||||
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||
self.optimizer_D_ViT = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||||
self.optimizers.append(self.optimizer_G)
|
||||
self.optimizers.append(self.optimizer_D_ViT)
|
||||
|
||||
self.cao = ContentAwareOptimization(opt.lambda_inc, opt.eta_ratio) #损失函数
|
||||
self.ctn = ContentAwareTemporalNorm() #生成的伪光流
|
||||
def data_dependent_initialize(self, data):
|
||||
"""
|
||||
The feature network netF is defined in terms of the shape of the intermediate, extracted
|
||||
features of the encoder portion of netG. Because of this, the weights of netF are
|
||||
initialized at the first feedforward pass with some input images.
|
||||
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def optimize_parameters(self):
|
||||
# forward
|
||||
self.forward()
|
||||
|
||||
# update D
|
||||
self.set_requires_grad(self.netD_ViT, True)
|
||||
self.optimizer_D_ViT.zero_grad()
|
||||
self.loss_D = self.compute_D_loss()
|
||||
self.loss_D.backward()
|
||||
self.optimizer_D_ViT.step()
|
||||
|
||||
# update G
|
||||
self.set_requires_grad(self.netD_ViT, False)
|
||||
self.optimizer_G.zero_grad()
|
||||
self.loss_G = self.compute_G_loss()
|
||||
self.loss_G.backward()
|
||||
self.optimizer_G.step()
|
||||
|
||||
def set_input(self, input):
|
||||
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
||||
Parameters:
|
||||
input (dict): include the data itself and its metadata information.
|
||||
The option 'direction' can be used to swap domain A and domain B.
|
||||
"""
|
||||
AtoB = self.opt.direction == 'AtoB'
|
||||
self.real_A = input['A' if AtoB else 'B'].to(self.device)
|
||||
self.real_B = input['B' if AtoB else 'A'].to(self.device)
|
||||
self.image_paths = input['A_paths' if AtoB else 'B_paths']
|
||||
|
||||
def forward(self):
|
||||
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
||||
self.fake_B = self.netG(self.real_A)
|
||||
|
||||
if self.opt.isTrain:
|
||||
real_A = self.real_A
|
||||
real_B = self.real_B
|
||||
fake_B = self.fake_B
|
||||
self.real_A_resize = self.resize(real_A)
|
||||
real_B = self.resize(real_B)
|
||||
self.fake_B_resize = self.resize(fake_B)
|
||||
self.mutil_real_A_tokens = self.netPreViT(self.real_A_resize, self.atten_layers, get_tokens=True)
|
||||
self.mutil_real_B_tokens = self.netPreViT(real_B, self.atten_layers, get_tokens=True)
|
||||
self.mutil_fake_B_tokens = self.netPreViT(self.fake_B_resize, self.atten_layers, get_tokens=True)
|
||||
|
||||
|
||||
def compute_D_loss(self):
|
||||
"""Calculate GAN loss for the discriminator"""
|
||||
|
||||
|
||||
lambda_D_ViT = self.opt.lambda_D_ViT
|
||||
fake_B_tokens = self.mutil_fake_B_tokens[0].detach()
|
||||
real_B_tokens = self.mutil_real_B_tokens[0]
|
||||
pre_fake_ViT = self.netD_ViT(fake_B_tokens)
|
||||
pred_real_ViT = self.netD_ViT(real_B_tokens)
|
||||
|
||||
self.loss_D_real_ViT , self.weight_real = self.cao(pred_real_ViT, True)
|
||||
self.loss_D_fake_ViT , self.weight_fake = self.cao(pre_fake_ViT, False)
|
||||
|
||||
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5* lambda_D_ViT
|
||||
|
||||
|
||||
return self.loss_D_ViT
|
||||
|
||||
def compute_G_loss(self):
|
||||
if self.opt.lambda_ctn > 0.0:
|
||||
# 生成光流图(使用判别器的权重)
|
||||
self.f_content = self.ctn(self.weight_fake.detach())
|
||||
|
||||
# 变换后的图片
|
||||
self.warped_real_A = warp(self.real_A, self.f_content)
|
||||
self.warped_fake_B = warp(self.fake_B, self.f_content)
|
||||
# 第二次生成
|
||||
self.warped_fake_B2 = self.netG(self.warped_real_A)
|
||||
|
||||
# 计算损失
|
||||
self.loss_ctn = self.criterionL1(self.warped_fake_B, self.warped_fake_B2) * self.opt.lambda_ctn
|
||||
else:
|
||||
self.loss_ctn = 0.0
|
||||
|
||||
# if self.opt.lambda_GAN > 0.0:
|
||||
|
||||
# fake_B_tokens = self.mutil_fake_B_tokens[0]
|
||||
# pred_fake_ViT = self.netD_ViT(fake_B_tokens)
|
||||
# self.loss_G_GAN = self.criterionGAN(pred_fake_ViT, True) * self.opt.lambda_GAN
|
||||
# else:
|
||||
# self.loss_G_GAN = 0.0
|
||||
if self.opt.lambda_GAN > 0.0:
|
||||
|
||||
fake_B_tokens = self.mutil_fake_B_tokens[0]
|
||||
pred_fake_ViT = self.netD_ViT(fake_B_tokens)
|
||||
self.loss_G_fake_ViT , self.weight_real = self.cao(pred_fake_ViT, True)
|
||||
self.loss_G_GAN = self.loss_G_fake_ViT * self.opt.lambda_GAN
|
||||
else:
|
||||
self.loss_G_GAN = 0.0
|
||||
if self.opt.lambda_global > 0.0 or self.opt.lambda_spatial > 0.0:
|
||||
self.loss_global, self.loss_spatial = self.calculate_attention_loss()
|
||||
else:
|
||||
self.loss_global, self.loss_spatial = 0.0, 0.0
|
||||
|
||||
|
||||
|
||||
self.loss_G = self.loss_G_GAN + self.loss_global + self.loss_spatial + self.loss_ctn
|
||||
return self.loss_G
|
||||
|
||||
def calculate_attention_loss(self):
|
||||
n_layers = len(self.atten_layers)
|
||||
mutil_real_A_tokens = self.mutil_real_A_tokens
|
||||
mutil_fake_B_tokens = self.mutil_fake_B_tokens
|
||||
|
||||
|
||||
|
||||
if self.opt.lambda_global > 0.0:
|
||||
loss_global = self.calculate_similarity(mutil_real_A_tokens, mutil_fake_B_tokens)
|
||||
|
||||
|
||||
else:
|
||||
loss_global = 0.0
|
||||
|
||||
if self.opt.lambda_spatial > 0.0:
|
||||
loss_spatial = 0.0
|
||||
local_nums = self.opt.local_nums
|
||||
tokens_cnt = 576
|
||||
local_id = np.random.permutation(tokens_cnt)
|
||||
local_id = local_id[:int(min(local_nums, tokens_cnt))]
|
||||
|
||||
mutil_real_A_local_tokens = self.netPreViT(self.real_A_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
|
||||
mutil_fake_B_local_tokens = self.netPreViT(self.fake_B_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||||
|
||||
loss_spatial = self.calculate_similarity(mutil_real_A_local_tokens, mutil_fake_B_local_tokens)
|
||||
|
||||
|
||||
else:
|
||||
loss_spatial = 0.0
|
||||
|
||||
|
||||
|
||||
return loss_global * self.opt.lambda_global, loss_spatial * self.opt.lambda_spatial
|
||||
|
||||
def calculate_similarity(self, mutil_src_tokens, mutil_tgt_tokens):
|
||||
loss = 0.0
|
||||
n_layers = len(self.atten_layers)
|
||||
|
||||
for src_tokens, tgt_tokens in zip(mutil_src_tokens, mutil_tgt_tokens):
|
||||
|
||||
src_tgt = src_tokens.bmm(tgt_tokens.permute(0,2,1))
|
||||
tgt_src = tgt_tokens.bmm(src_tokens.permute(0,2,1))
|
||||
cos_dis_global = F.cosine_similarity(src_tgt, tgt_src, dim=-1)
|
||||
loss += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
|
||||
|
||||
loss = loss / n_layers
|
||||
return loss
|
||||
|
||||
@ -36,7 +36,7 @@ class BaseOptions():
|
||||
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
|
||||
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
|
||||
parser.add_argument('--netD', type=str, default='basic_cond', choices=['basic_cond', 'basic', 'n_layers', 'pixel', 'patch', 'tilestylegan2', 'stylegan2'], help='specify discriminator architecture. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
|
||||
parser.add_argument('--netG', type=str, default='resnet_9blocks_cond', choices=['resnet_9blocks','resnet_9blocks_mask', 'resnet_6blocks', 'unet_256', 'unet_128', 'stylegan2', 'smallstylegan2', 'resnet_cat', 'resnet_9blocks_cond'], help='specify generator architecture')
|
||||
parser.add_argument('--netG', type=str, default='resnet_9blocks', choices=['resnet_9blocks','resnet_9blocks_mask', 'resnet_6blocks', 'unet_256', 'unet_128', 'stylegan2', 'smallstylegan2', 'resnet_cat', 'resnet_9blocks_cond'], help='specify generator architecture')
|
||||
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
|
||||
parser.add_argument('--normG', type=str, default='instance', choices=['instance', 'batch', 'none'], help='instance normalization or batch normalization for G')
|
||||
parser.add_argument('--normD', type=str, default='instance', choices=['instance', 'batch', 'none'], help='instance normalization or batch normalization for D')
|
||||
|
||||
BIN
results/cp_2/test_100/images/fake_B/a000001.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000002.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000016.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000017.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000031.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000032.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000046.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000047.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000061.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000062.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000076.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000077.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000091.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000092.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000106.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000107.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000121.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000122.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000136.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000137.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000151.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000152.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000166.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000167.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000181.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000182.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000196.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000197.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000211.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000212.png
Normal file
|
After Width: | Height: | Size: 130 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000226.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000227.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000241.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000242.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000256.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000257.png
Normal file
|
After Width: | Height: | Size: 131 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000271.png
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000272.png
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000286.png
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000287.png
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000301.png
Normal file
|
After Width: | Height: | Size: 133 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000302.png
Normal file
|
After Width: | Height: | Size: 133 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000316.png
Normal file
|
After Width: | Height: | Size: 133 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000317.png
Normal file
|
After Width: | Height: | Size: 133 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000331.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000332.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000346.png
Normal file
|
After Width: | Height: | Size: 135 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000347.png
Normal file
|
After Width: | Height: | Size: 135 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000361.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000362.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000376.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000377.png
Normal file
|
After Width: | Height: | Size: 134 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000391.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000392.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000406.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000407.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000421.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000422.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000436.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000437.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000451.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000452.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000466.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000467.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000481.png
Normal file
|
After Width: | Height: | Size: 138 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000482.png
Normal file
|
After Width: | Height: | Size: 138 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000496.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000497.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000511.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000512.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000526.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000527.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000541.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000542.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000556.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000557.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000571.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000572.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000586.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000587.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000601.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000602.png
Normal file
|
After Width: | Height: | Size: 137 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000616.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000617.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000631.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000632.png
Normal file
|
After Width: | Height: | Size: 135 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000646.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000647.png
Normal file
|
After Width: | Height: | Size: 136 KiB |
BIN
results/cp_2/test_100/images/fake_B/a000661.png
Normal file
|
After Width: | Height: | Size: 136 KiB |