364 lines
17 KiB
Python
364 lines
17 KiB
Python
import numpy as np
|
||
import torch
|
||
from .base_model import BaseModel
|
||
from . import networks
|
||
from .patchnce import PatchNCELoss
|
||
import util.util as util
|
||
import timm
|
||
import time
|
||
import torch.nn.functional as F
|
||
import sys
|
||
from functools import partial
|
||
import torch.nn as nn
|
||
import math
|
||
|
||
from torchvision.transforms import transforms as tfs
|
||
|
||
class ROMAModel(BaseModel):
|
||
|
||
@staticmethod
|
||
def modify_commandline_options(parser, is_train=True):
|
||
""" Configures options specific for CUT model
|
||
"""
|
||
parser.add_argument('--adj_size_list', type=list, default=[2, 4, 6, 8, 12], help='different scales of perception field')
|
||
parser.add_argument('--lambda_mlp', type=float, default=1.0, help='weight of lr for discriminator')
|
||
parser.add_argument('--lambda_motion', type=float, default=1.0, help='weight for Temporal Consistency')
|
||
parser.add_argument('--lambda_D_ViT', type=float, default=1.0, help='weight for discriminator')
|
||
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss: GAN(G(X))')
|
||
parser.add_argument('--lambda_global', type=float, default=1.0, help='weight for Global Structural Consistency')
|
||
parser.add_argument('--lambda_spatial', type=float, default=1.0, help='weight for Local Structural Consistency')
|
||
parser.add_argument('--atten_layers', type=str, default='1,3,5', help='compute Cross-Similarity on which layers')
|
||
parser.add_argument('--local_nums', type=int, default=256)
|
||
parser.add_argument('--which_D_layer', type=int, default=-1)
|
||
parser.add_argument('--side_length', type=int, default=7)
|
||
|
||
parser.set_defaults(pool_size=0)
|
||
|
||
opt, _ = parser.parse_known_args()
|
||
|
||
return parser
|
||
|
||
def __init__(self, opt):
|
||
BaseModel.__init__(self, opt)
|
||
|
||
|
||
self.loss_names = ['G_GAN_ViT', 'D_real_ViT', 'D_fake_ViT', 'global', 'spatial', 'motion']
|
||
self.visual_names = ['real_A0', 'real_A1', 'fake_B0', 'fake_B1', 'real_B0', 'real_B1']
|
||
self.atten_layers = [int(i) for i in self.opt.atten_layers.split(',')]
|
||
|
||
|
||
if self.isTrain:
|
||
self.model_names = ['G', 'D_ViT']
|
||
else: # during test time, only load G
|
||
self.model_names = ['G']
|
||
|
||
|
||
# define networks (both generator and discriminator)
|
||
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, opt.no_antialias_up, self.gpu_ids, opt)
|
||
|
||
|
||
if self.isTrain:
|
||
|
||
self.netD_ViT = networks.MLPDiscriminator().to(self.device)
|
||
self.netPreViT = timm.create_model("vit_base_patch16_384",pretrained=True).to(self.device)
|
||
|
||
|
||
self.norm = F.softmax
|
||
|
||
self.resize = tfs.Resize(size=(384,384))
|
||
|
||
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
|
||
self.criterionNCE = []
|
||
|
||
for atten_layer in self.atten_layers:
|
||
self.criterionNCE.append(PatchNCELoss(opt).to(self.device))
|
||
|
||
self.criterionL1 = torch.nn.L1Loss().to(self.device)
|
||
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
|
||
self.optimizer_D_ViT = torch.optim.Adam(self.netD_ViT.parameters(), lr=opt.lr * opt.lambda_mlp, betas=(opt.beta1, opt.beta2))
|
||
self.optimizers.append(self.optimizer_G)
|
||
self.optimizers.append(self.optimizer_D_ViT)
|
||
|
||
def data_dependent_initialize(self, data):
|
||
"""
|
||
The feature network netF is defined in terms of the shape of the intermediate, extracted
|
||
features of the encoder portion of netG. Because of this, the weights of netF are
|
||
initialized at the first feedforward pass with some input images.
|
||
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call.
|
||
"""
|
||
pass
|
||
|
||
|
||
def optimize_parameters(self):
|
||
# forward
|
||
self.forward()
|
||
|
||
# update D
|
||
self.set_requires_grad(self.netD_ViT, True)
|
||
self.optimizer_D_ViT.zero_grad()
|
||
self.loss_D = self.compute_D_loss()
|
||
self.loss_D.backward()
|
||
self.optimizer_D_ViT.step()
|
||
|
||
# update G
|
||
self.set_requires_grad(self.netD_ViT, False)
|
||
self.optimizer_G.zero_grad()
|
||
self.loss_G = self.compute_G_loss()
|
||
self.loss_G.backward()
|
||
self.optimizer_G.step()
|
||
|
||
def set_input(self, input):
|
||
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
||
Parameters:
|
||
input (dict): include the data itself and its metadata information.
|
||
The option 'direction' can be used to swap domain A and domain B.
|
||
"""
|
||
AtoB = self.opt.direction == 'AtoB'
|
||
self.real_A0 = input['A0' if AtoB else 'B0'].to(self.device)
|
||
self.real_A1 = input['A1' if AtoB else 'B1'].to(self.device)
|
||
self.real_B0 = input['B0' if AtoB else 'A0'].to(self.device)
|
||
self.real_B1 = input['B1' if AtoB else 'A1'].to(self.device)
|
||
self.image_paths = input['A_paths' if AtoB else 'B_paths']
|
||
|
||
def forward(self):
|
||
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
|
||
|
||
# ============ 第一步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||
tau = self.opt.tau
|
||
T = self.opt.num_timesteps
|
||
incs = np.array([0] + [1/(i+1) for i in range(T-1)])
|
||
times = np.cumsum(incs)
|
||
times = times / times[-1]
|
||
times = 0.5 * times[-1] + 0.5 * times #[0.5,1]
|
||
times = np.concatenate([np.zeros(1), times])
|
||
times = torch.tensor(times).float().cuda()
|
||
self.times = times
|
||
bs = self.mutil_real_A0_tokens.size(0)
|
||
time_idx = (torch.randint(T, size=[1]).cuda() * torch.ones(size=[1]).cuda()).long()
|
||
self.time_idx = time_idx
|
||
|
||
with torch.no_grad():
|
||
self.netG.eval()
|
||
# ============ 第二步:对 real_A / real_A2 进行多步随机生成过程 ============
|
||
for t in range(self.time_idx.int().item() + 1):
|
||
# 计算增量 delta 与 inter/scale,用于每个时间步的插值等
|
||
if t > 0:
|
||
delta = times[t] - times[t - 1]
|
||
denom = times[-1] - times[t - 1]
|
||
inter = (delta / denom).reshape(-1, 1, 1, 1)
|
||
scale = (delta * (1 - delta / denom)).reshape(-1, 1, 1, 1)
|
||
|
||
# 对 Xt、Xt2 进行随机噪声更新
|
||
Xt = self.mutil_real_A0_tokens if (t == 0) else (1 - inter) * Xt + inter * Xt_1.detach() + \
|
||
(scale * tau).sqrt() * torch.randn_like(Xt).to(self.mutil_real_A0_tokens.device)
|
||
time_idx = (t * torch.ones(size=[self.mutil_real_A0_tokens.shape[0]]).to(self.mutil_real_A0_tokens.device)).long()
|
||
z = torch.randn(size=[self.mutil_real_A0_tokens.shape[0], 4 * self.opt.ngf]).to(self.mutil_real_A0_tokens.device)
|
||
self.time = times[time_idx]
|
||
Xt_1 = self.netG(Xt, self.time, z)
|
||
|
||
Xt2 = self.mutil_real_A1_tokens if (t == 0) else (1 - inter) * Xt2 + inter * Xt_12.detach() + \
|
||
(scale * tau).sqrt() * torch.randn_like(Xt2).to(self.mutil_real_A1_tokens.device)
|
||
time_idx = (t * torch.ones(size=[self.mutil_real_A1_tokens.shape[0]]).to(self.mutil_real_A1_tokens.device)).long()
|
||
z = torch.randn(size=[self.mutil_real_A1_tokens.shape[0], 4 * self.opt.ngf]).to(self.mutil_real_A1_tokens.device)
|
||
Xt_12 = self.netG(Xt2, self.time, z)
|
||
|
||
# 保存去噪后的中间结果 (real_A_noisy 等),供下一步做拼接
|
||
self.real_A_noisy = Xt.detach()
|
||
self.real_A_noisy2 = Xt2.detach()
|
||
# 保存noisy_map
|
||
self.noisy_map = self.real_A_noisy - self.real_A
|
||
|
||
# ============ 第三步:拼接输入并执行网络推理 =============
|
||
bs = self.mutil_real_A0_tokens.size(0)
|
||
z_in = torch.randn(size=[2 * bs, 4 * self.opt.ngf]).to(self.mutil_real_A0_tokens.device)
|
||
z_in2 = torch.randn(size=[bs, 4 * self.opt.ngf]).to(self.mutil_real_A1_tokens.device)
|
||
# 将 real_A, real_B 拼接 (如 nce_idt=True),并同样处理 real_A_noisy 与 XtB
|
||
self.real = self.mutil_real_A0_tokens
|
||
self.realt = self.real_A_noisy
|
||
|
||
if self.opt.flip_equivariance:
|
||
self.flipped_for_equivariance = self.opt.isTrain and (np.random.random() < 0.5)
|
||
if self.flipped_for_equivariance:
|
||
self.real = torch.flip(self.real, [3])
|
||
self.realt = torch.flip(self.realt, [3])
|
||
|
||
|
||
self.fake_B0 = self.netG(self.real_A0)
|
||
self.fake_B1 = self.netG(self.real_A1)
|
||
|
||
if self.opt.isTrain:
|
||
real_A0 = self.real_A0
|
||
real_A1 = self.real_A1
|
||
real_B0 = self.real_B0
|
||
real_B1 = self.real_B1
|
||
fake_B0 = self.fake_B0
|
||
fake_B1 = self.fake_B1
|
||
self.real_A0_resize = self.resize(real_A0)
|
||
self.real_A1_resize = self.resize(real_A1)
|
||
real_B0 = self.resize(real_B0)
|
||
real_B1 = self.resize(real_B1)
|
||
self.fake_B0_resize = self.resize(fake_B0)
|
||
self.fake_B1_resize = self.resize(fake_B1)
|
||
self.mutil_real_A0_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True)
|
||
self.mutil_real_A1_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True)
|
||
self.mutil_real_B0_tokens = self.netPreViT(real_B0, self.atten_layers, get_tokens=True)
|
||
self.mutil_real_B1_tokens = self.netPreViT(real_B1, self.atten_layers, get_tokens=True)
|
||
self.mutil_fake_B0_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True)
|
||
self.mutil_fake_B1_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True)
|
||
|
||
def tokens_concat(self, origin_tokens, adjacent_size):
|
||
adj_size = adjacent_size
|
||
B, token_num, C = origin_tokens.shape[0], origin_tokens.shape[1], origin_tokens.shape[2]
|
||
S = int(math.sqrt(token_num))
|
||
if S * S != token_num:
|
||
print('Error! Not a square!')
|
||
token_map = origin_tokens.clone().reshape(B,S,S,C)
|
||
cut_patch_list = []
|
||
for i in range(0, S, adj_size):
|
||
for j in range(0, S, adj_size):
|
||
i_left = i
|
||
i_right = i + adj_size + 1 if i + adj_size <= S else S + 1
|
||
j_left = j
|
||
j_right = j + adj_size if j + adj_size <= S else S + 1
|
||
|
||
cut_patch = token_map[:, i_left:i_right, j_left: j_right, :]
|
||
cut_patch= cut_patch.reshape(B,-1,C)
|
||
cut_patch = torch.mean(cut_patch, dim=1, keepdim=True)
|
||
cut_patch_list.append(cut_patch)
|
||
|
||
|
||
result = torch.cat(cut_patch_list,dim=1)
|
||
return result
|
||
|
||
|
||
def cat_results(self, origin_tokens, adj_size_list):
|
||
res_list = [origin_tokens]
|
||
for ad_s in adj_size_list:
|
||
cat_result = self.tokens_concat(origin_tokens, ad_s)
|
||
res_list.append(cat_result)
|
||
|
||
result = torch.cat(res_list, dim=1)
|
||
|
||
return result
|
||
|
||
|
||
|
||
def compute_D_loss(self):
|
||
"""Calculate GAN loss for the discriminator"""
|
||
|
||
|
||
lambda_D_ViT = self.opt.lambda_D_ViT
|
||
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer].detach()
|
||
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer].detach()
|
||
|
||
real_B0_tokens = self.mutil_real_B0_tokens[self.opt.which_D_layer]
|
||
real_B1_tokens = self.mutil_real_B1_tokens[self.opt.which_D_layer]
|
||
|
||
|
||
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
|
||
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
|
||
|
||
|
||
|
||
real_B0_tokens = self.cat_results(real_B0_tokens, self.opt.adj_size_list)
|
||
real_B1_tokens = self.cat_results(real_B1_tokens, self.opt.adj_size_list)
|
||
|
||
pre_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||
pre_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
||
|
||
self.loss_D_fake_ViT = (self.criterionGAN(pre_fake0_ViT, False).mean() + self.criterionGAN(pre_fake1_ViT, False).mean()) * 0.5 * lambda_D_ViT
|
||
|
||
pred_real0_ViT = self.netD_ViT(real_B0_tokens)
|
||
pred_real1_ViT = self.netD_ViT(real_B1_tokens)
|
||
self.loss_D_real_ViT = (self.criterionGAN(pred_real0_ViT, True).mean() + self.criterionGAN(pred_real1_ViT, True).mean()) * 0.5 * lambda_D_ViT
|
||
|
||
self.loss_D_ViT = (self.loss_D_fake_ViT + self.loss_D_real_ViT) * 0.5
|
||
|
||
|
||
return self.loss_D_ViT
|
||
|
||
def compute_G_loss(self):
|
||
|
||
if self.opt.lambda_GAN > 0.0:
|
||
|
||
fake_B0_tokens = self.mutil_fake_B0_tokens[self.opt.which_D_layer]
|
||
fake_B1_tokens = self.mutil_fake_B1_tokens[self.opt.which_D_layer]
|
||
fake_B0_tokens = self.cat_results(fake_B0_tokens, self.opt.adj_size_list)
|
||
fake_B1_tokens = self.cat_results(fake_B1_tokens, self.opt.adj_size_list)
|
||
pred_fake0_ViT = self.netD_ViT(fake_B0_tokens)
|
||
pred_fake1_ViT = self.netD_ViT(fake_B1_tokens)
|
||
self.loss_G_GAN_ViT = (self.criterionGAN(pred_fake0_ViT, True) + self.criterionGAN(pred_fake1_ViT, True)) * 0.5 * self.opt.lambda_GAN
|
||
else:
|
||
self.loss_G_GAN_ViT = 0.0
|
||
|
||
if self.opt.lambda_global > 0.0 or self.opt.lambda_spatial > 0.0:
|
||
self.loss_global, self.loss_spatial = self.calculate_attention_loss()
|
||
else:
|
||
self.loss_global, self.loss_spatial = 0.0, 0.0
|
||
|
||
if self.opt.lambda_motion > 0.0:
|
||
self.loss_motion = 0.0
|
||
for real_A0_tokens, real_A1_tokens, fake_B0_tokens, fake_B1_tokens in zip(self.mutil_real_A0_tokens, self.mutil_real_A1_tokens, self.mutil_fake_B0_tokens, self.mutil_fake_B1_tokens):
|
||
A0_B1 = real_A0_tokens.bmm(fake_B1_tokens.permute(0,2,1))
|
||
B0_A1 = fake_B0_tokens.bmm(real_A1_tokens.permute(0,2,1))
|
||
cos_dis_global = F.cosine_similarity(A0_B1, B0_A1, dim=-1)
|
||
self.loss_motion += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
|
||
else:
|
||
self.loss_motion = 0.0
|
||
|
||
self.loss_G = self.loss_G_GAN_ViT + self.loss_global + self.loss_spatial + self.loss_motion
|
||
return self.loss_G
|
||
|
||
def calculate_attention_loss(self):
|
||
n_layers = len(self.atten_layers)
|
||
mutil_real_A0_tokens = self.mutil_real_A0_tokens
|
||
mutil_real_A1_tokens = self.mutil_real_A1_tokens
|
||
mutil_fake_B0_tokens = self.mutil_fake_B0_tokens
|
||
mutil_fake_B1_tokens = self.mutil_fake_B1_tokens
|
||
|
||
|
||
if self.opt.lambda_global > 0.0:
|
||
loss_global = self.calculate_similarity(mutil_real_A0_tokens, mutil_fake_B0_tokens) + self.calculate_similarity(mutil_real_A1_tokens, mutil_fake_B1_tokens)
|
||
loss_global *= 0.5
|
||
|
||
else:
|
||
loss_global = 0.0
|
||
|
||
if self.opt.lambda_spatial > 0.0:
|
||
loss_spatial = 0.0
|
||
local_nums = self.opt.local_nums
|
||
tokens_cnt = 576
|
||
local_id = np.random.permutation(tokens_cnt)
|
||
local_id = local_id[:int(min(local_nums, tokens_cnt))]
|
||
|
||
mutil_real_A0_local_tokens = self.netPreViT(self.real_A0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||
mutil_real_A1_local_tokens = self.netPreViT(self.real_A1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||
|
||
mutil_fake_B0_local_tokens = self.netPreViT(self.fake_B0_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||
mutil_fake_B1_local_tokens = self.netPreViT(self.fake_B1_resize, self.atten_layers, get_tokens=True, local_id=local_id, side_length = self.opt.side_length)
|
||
|
||
loss_spatial = self.calculate_similarity(mutil_real_A0_local_tokens, mutil_fake_B0_local_tokens) + self.calculate_similarity(mutil_real_A1_local_tokens, mutil_fake_B1_local_tokens)
|
||
loss_spatial *= 0.5
|
||
|
||
else:
|
||
loss_spatial = 0.0
|
||
|
||
|
||
|
||
return loss_global * self.opt.lambda_global, loss_spatial * self.opt.lambda_spatial
|
||
|
||
def calculate_similarity(self, mutil_src_tokens, mutil_tgt_tokens):
|
||
loss = 0.0
|
||
n_layers = len(self.atten_layers)
|
||
|
||
for src_tokens, tgt_tokens in zip(mutil_src_tokens, mutil_tgt_tokens):
|
||
|
||
src_tgt = src_tokens.bmm(tgt_tokens.permute(0,2,1))
|
||
tgt_src = tgt_tokens.bmm(src_tokens.permute(0,2,1))
|
||
cos_dis_global = F.cosine_similarity(src_tgt, tgt_src, dim=-1)
|
||
loss += self.criterionL1(torch.ones_like(cos_dis_global), cos_dis_global).mean()
|
||
|
||
loss = loss / n_layers
|
||
return loss
|
||
|